The taut mooring system using synthetic fiber ropes has overcome the shortcomings such as the large self-weight of the mooring lines and provides better mooring performance for the floating structures.The polyester ro...The taut mooring system using synthetic fiber ropes has overcome the shortcomings such as the large self-weight of the mooring lines and provides better mooring performance for the floating structures.The polyester rope has attracted much attention among numerous synthetic fiber rope materials due to its lightweight,low price,corrosion resistance,and high strength.Thus,the mooring characteristics of it are worth studying.Polyester mooring lines are flexible in deep water,when a marine structure is moored by them,the geometric nonlinearity such as large displacement,large stretch,and large bending deformation,and the material nonlinearity like viscoelastic of the polyester ropes become complex integrated problems to be studied.Considering the nonlinear phenomenon,the simulation and calculation of a polyester line were carried out by the absolute nodal coordinate formulation(ANCF)in this paper since the ANCF method has advantages in dealing with the significant deformation problems of the flexible structures.In addition,a chain mooring line was also simulated for comparison,and the results show that the polyester ropes reduce the self-weight of the mooring lines and provide sufficient mooring strength at the same time,and the nonlinear phenomenon of the polyester ropes is different from that of the chain mooring lines.展开更多
Frequency-dependent amplitude versus offset(FAVO)inversion is a popular method to estimate the frequency-dependent elastic parameters by using amplitude and frequency information of pre-stack seismic data to guide flu...Frequency-dependent amplitude versus offset(FAVO)inversion is a popular method to estimate the frequency-dependent elastic parameters by using amplitude and frequency information of pre-stack seismic data to guide fluid identification.Current frequency-dependent AVO inversion methods are mainly based on elastic theory without the consideration of the viscoelasticity of oil/gas.A fluid discrimination approach is proposed in this study by incorporating the viscoelasticity and relevant FAVO inversion.Based on viscoelastic and rock physics theories,a frequency-dependent viscoelastic solid-liquid decoupling fluid factor is initially constructed,and its sensitivity in fluid discrimination is compared with other conventional fluid factors.Furthermore,a novel reflectivity equation is derived in terms of the viscoelastic solid-liquid decoupling fluid factor.Due to the introduction of viscoelastic theory,the proposed reflectivity is related to frequency,which is more widely applicable than the traditional elastic reflectivity equation directly derived from the elastic reflectivity equation on frequency.Finally,a pragmatic frequency-dependent inversion method is introduced to verify the feasibility of the equation for frequency-dependent viscoelastic solid-liquid decoupling fluid factor prediction.Synthetic and field data examples demonstrate the feasibility and stability of the proposed approach in fluid discrimination.展开更多
Based on the complex variable moving least-square (CVMLS) approximation, the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presente...Based on the complex variable moving least-square (CVMLS) approximation, the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presented in this paper. The Galerkin weak form is employed to obtain the equation system, and the penalty method is used to apply the essential boundary conditions, then the corresponding formulae of the CVEFG method for two-dimensional viscoelasticity problems under the creep condition are obtained. Compared with the element-free Galerkin (EFG) method, with the same node distribution, the CVEFG method has higher precision, and to obtain the similar precision, the CVEFG method has greater computational efficiency. Some numerical examples are given to demonstrate the validity and the efficiency of the method.展开更多
The viscoelasticity and subharmonic generation of a kind of lipid ultrasound contrast agent are investigated. Based on the measurement of the sound attenuation spectrum, the viscoelasticity of the lipid shell is estim...The viscoelasticity and subharmonic generation of a kind of lipid ultrasound contrast agent are investigated. Based on the measurement of the sound attenuation spectrum, the viscoelasticity of the lipid shell is estimated by use of an optimization method. Shear modulus Gs=10MPa and shear viscosity μs=1.49N.S/m^2 are obtained. The nonlinear oscillation of the encapsulated microbubble is studied with Church's model theoretically and experimentally. Especially, the dependence of subharmonic on the incident acoustic pressure is studied. The results reveal that the development of the subharmonic undergoes three stages, i.e. occurrence, growth and saturation, and that hysteresis appears in descending ramp insonation.展开更多
H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and unique...H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.展开更多
A hybrid natural element method(HNEM) for two-dimensional viscoelasticity problems under the creep condition is proposed. The natural neighbor interpolation is used as the test function, and the discrete equation sy...A hybrid natural element method(HNEM) for two-dimensional viscoelasticity problems under the creep condition is proposed. The natural neighbor interpolation is used as the test function, and the discrete equation system of the HNEM for viscoelasticity problems is obtained using the Hellinger–Reissner variational principle. In contrast to the natural element method(NEM), the HNEM can directly obtain the nodal stresses, which have higher precisions than those obtained using the moving least-square(MLS) approximation. Some numerical examples are given to demonstrate the validity and superiority of this HNEM.展开更多
The formation of singularity and breakdown of classical solutions to the three- dimensional compressible viscoelasticity and inviscid elasticity are considered. For the compressible inviscid elastic fluids, the finite...The formation of singularity and breakdown of classical solutions to the three- dimensional compressible viscoelasticity and inviscid elasticity are considered. For the compressible inviscid elastic fluids, the finite-time formation of singularity in classical solu- tions is proved for certain initial data. For the compressible viscoelastic fluids, a criterion in term of the temporal integral of the velocity gradient is obtained for the breakdown of smooth solutions.展开更多
The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,an...The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.展开更多
Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-f...Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-friendly material,i.e.,calcium alginate(CaAlg)microspheres for EOR.Two dominant mechanisms responsible for EOR over Ca Alg fluid have been verified,including the microscopic oil displacement efficacy augmented by regulating capillary force(determined by the joint action of interfacial tension and wettability between different phases)and macroscopic sweep volume increment through profile control and mobility ratio reduction.This comprehensive effectiveness can be further impacted when the CaAlg microsphere is embellished ulteriorly by using appropriate amount of sodium dodecyl sulfonate(SDS).The core flooding and nuclear magnetic resonance(NMR)tests demonstrate that CaAlg-SDS microsphere can balance the interphase property regulation(wettability alteration and IFT reduction)and rheology properties,enabling simultaneous profile control and oil displacement.Excessive introduction of SDS will have a negative impact on rheological properties,which is not favored for EOR.Our results show that the involvement of 4-m M SDS will provide the best behavior,with an EOR rate of 34.38%.This cost-effective and environmentally-friendly bio-microspherebased microfluidic displacement technology is expected to achieve“green”oil recovery in future oilfield exploitation.展开更多
Viscoelastic surfactants(VES)are often used as viscous diverters in acidizing stimulation to prolong the acid consumption time and maximize zonal coverage of the acid for improving well productivity.However,the ceilin...Viscoelastic surfactants(VES)are often used as viscous diverters in acidizing stimulation to prolong the acid consumption time and maximize zonal coverage of the acid for improving well productivity.However,the ceiling temperature of commercial VES cannot exceed 120℃in practical use because of the poor thermal stability and fragile molecular structure,hindering their implementation in hightemperature oil reservoirs,i.e.,≥150℃.Here we synthesized a novel C22-tailed diamine,N-erucaminopropyl-N,N-dimethylamine(EDPA),and examined comparatively its rheological behavior,assemblies morphology and molecular stability in 20 wt%HCl with a commercial VES,erucyl dimethyl amidopropyl betaine(EDAB).The feasibility of EDPA for acidizing stimulation was assessed by acid etching of carbonate rock with its HCl solution at 150℃.Rheological results showed that the 2.5 wt%EDPA—20 wt%HCl solution maintains stable viscosity of 90 m Pa s at 150℃for 60 min,while that of 2.0 wt%EDAB HCl solution is just 1 m Pa s under identical conditions.1H NMR spectra and cryo-TEM observations revealed that the chemical structure and self-assembled architectures of EDPA remained intact in such context,but the EDAB suffered from degradation due to the hydrolysis of the amide group,accounting for the poor heat-resistance and acid-tolerance.The reaction rate of 2.5 wt%EDPA HCl solution with carbonate rock was one order of magnitude lower than that of 20 wt%HCl solution at 150℃,underpinning the potential of EDPA to be used in the high-temperature reservoirs acidizing.This work improved the thermal tolerance of VES in highly concentrated HCl solution,paving a feasible way for the acidization of high-temperature reservoir environments(~150℃).展开更多
Dysphagia is commonly associated with malnutrition and an increased choking risk.To overcome these complications,food designed for people with dysphagia should have an appropriate texture and a high nutritional value....Dysphagia is commonly associated with malnutrition and an increased choking risk.To overcome these complications,food designed for people with dysphagia should have an appropriate texture and a high nutritional value.In this study,six formulations of a strawberry dessert enriched in protein(calcium caseinate)and fiber(wheat dextrin or inulin)were developed using different hydrocolloids(xanthan gum,carboxymethyl cellulose or modified starch)to provide desirable texture and stability.Nutritional value was calculated and total phenolic content and antioxidant activity of the samples were analyzed.Back-extrusion test,rheological measurements and sensory analysis were performed in refrigerated and frozen samples to characterize their textural and viscoelastic properties.The high content in protein(14.7 g/100 g)and fiber(7.9-8.7 g/100 g)made possible to use the claims“high protein”and“high fiber”.Phytochemicals supplied by strawberries contributed to the antioxidant properties of the dessert.Loss tangent ranged 0.28-0.35 for all the formulations,indicating a weak gel behavior,which could be considered safe to swallow.The formulations with dextrin in combination with carboxymethyl cellulose or xanthan gum seemed to be less susceptible to structural changes during frozen storage.This work provides insights for the development of a nutrient-dense dessert that meets the requirements of people with dysphagia.展开更多
Conventional plasticizers deteriorate mechanical and viscoelastic properties of the propellants due to their migration upon aging and long-term storage,which affects reliability and safety properties during exploitati...Conventional plasticizers deteriorate mechanical and viscoelastic properties of the propellants due to their migration upon aging and long-term storage,which affects reliability and safety properties during exploitation.To address this issue,conventional plasticizer,dioctyl adipate(DOA),is replaced by reactive one,castor oil(CO).In addition,three different types of HTPB were used to obtain propellants with designed viscoelastic and mechanical properties.The CO increased propellants viscosity,without a significant impact on the propellant processability,regardless to the type of prepolymer.Conversely,mechanical properties were different depending on the type of resin,which were further analyzed by gel permeation chromatography(GPC).Addition of CO formed a denser polymer network and shifted T_(g) to higher values,compared to the compositions with DOA.The tensile strength of CO-containing propellants was lower at +20℃ and +50℃ compared to the reference compositions,while the strain at maximum load and strain at break were significantly increased with pronounced plastic deformation,especially for samples at -30℃.The inclusion of CO in the propellants composition gives more room for adjusting a wide range of mechanical properties.展开更多
The general development of Rheo-NMR during the last four decades as well as selective hyphenated apparatuses is presented.Based on different magnet types,the current review is divided into two categories,namely low-fi...The general development of Rheo-NMR during the last four decades as well as selective hyphenated apparatuses is presented.Based on different magnet types,the current review is divided into two categories,namely low-field and high-field NMR,while the timedomain NMR is normally applied in the former case and the frequency-domain NMR is adopted in the latter one.Depending on different rheometer cells,it can be further divided into tensile and shear mode Rheo-NMR.The combination of various rheometer cells and NMR facility guarantees our acquisition of molecular level structure and dynamics information under flow conditions,which is crucial for our understanding of the molecular origin of complex fluids.A personal perspective is also presented at last to highlight possible development in this direction.展开更多
Angle domain common imaging gathers(ADCIGs)serve as not only an ideal approach for tomographic velocity modeling but also as a crucial means of mitigating low-frequency noise.Thus,they play a significant role in seism...Angle domain common imaging gathers(ADCIGs)serve as not only an ideal approach for tomographic velocity modeling but also as a crucial means of mitigating low-frequency noise.Thus,they play a significant role in seismic data processing.Recently,the Poynting vector method,due to its lower computational requirements and higher resolution,has become a commonly used approach for obtaining ADCIGs.However,due to the viscoelastic properties of underground media,attenuation effects(phase dispersion and amplitude attenuation)have become a factor,which is important in seismic data processing.However,the primary applications of ADCIGs are currently confined to acoustic and elastic media.To assess the influence of attenuation and elastic effects on ADCIGs,we introduce an extraction method for ADCIGs based on fractional viscoelastic equations.This method enhances ADCIGs accuracy by simultaneously considering both the attenuation and elastic properties of underground media.Meanwhile,the S-wave quasi tensor is used to reduce the impact of P-wave energy on S-wave stress,thus further increasing the accuracy of PS-ADCIGs.In conclusion,our analysis examines the impact of the quality factor Q on ADCIGs and offers theoretical guidance for parameter inversion.展开更多
The conservation of rheological and filtration properties of drilling fluids is essential during drilling operations.However,high-pressure and high-temperature conditions may affect drilling fluid additives,leading to...The conservation of rheological and filtration properties of drilling fluids is essential during drilling operations.However,high-pressure and high-temperature conditions may affect drilling fluid additives,leading to their degradation and reduced performance during operation.Hence,the main objective of this study is to formulate and evaluate a viscoelastic surfactant(VES)to design water-based drilling nanofluids(DNF).Silica nanomaterials are also incorporated into fluids to improve their main functional characteristics under harsh conditions.The investigation included:i)synthesis and characterization of VES through zeta potential,thermogravimetric analysis(TGA),Fourier transform infrared spectroscopy(FTIR),atomic force microscopy(AFM),and rheological behavior;ii)the effect of the presence of VES combined with silica nanoparticles on the rheological,filtration,thermal,and structural properties by steady and dynamic shear rheological,filter press,thermal aging assays,and SEM(SEM)assays,respectively;and iii)evaluation of filtration properties at the pore scale through a microfluidic approach.The rheological results showed that water-based muds(WBMs)in the presence of VES exhibited shearthinning and viscoelastic behavior slightly higher than that of WBMs with xanthan gum(XGD).Furthermore,the filtration and thermal properties of the drilling fluid improved in the presence of VES and silica nanoparticles at 0.1 wt%.Compared to the WBMs based on XGD,the 30-min filtrate volume for DNF was reduced by 75%.Moreover,the Herschel-Bulkley model was employed to represent the rheological behavior of fluids with an R2of approximately 0.99.According to SEM,laminar and spherical microstructures were observed for the WBMs based on VES and XGD,respectively.A uniform distribution of the nanoparticles was observed in the WBMs.The results obtained from microfluidic experiments indicated low dynamic filtration for fluids containing VES and silica nanoparticles.Specifically,the filtrate volume of fluids containing VES and VES with silica nanoparticles at 281 min was 0.35 and 0.04 m L,respectively.The differences in the rheological,filtration,thermal,and structural results were mainly associated with the morphological structure of VES or XGD and surface interactions with other WBMs additives.展开更多
Waxy crude oil exhibits complex rheological behavior below the pour point temperature, such as viscoelasticity, yield stress, and thixotropy, owing to the formation of a three-dimensional spongelike interlock network ...Waxy crude oil exhibits complex rheological behavior below the pour point temperature, such as viscoelasticity, yield stress, and thixotropy, owing to the formation of a three-dimensional spongelike interlock network structure. This viscoelasto-thixotropic behavior is an important rheologieal behavior of waxy crude oils, determining the flow recovery and safe restart of crude oil pipelines. Up to now, the thixotropic models for waxy crude have been all viscoplastic models, without considering the viscoelastic part before the yield point. In this work, based on analyzing the variation of the elastic stress and viscous stress in the Mujumbar model, a new viscoelasto-plastic model is proposed, whose shear stress is separated into an elastic component and a viscous component. The elastic stress is the product of the shear modulus and elastic strain; the shear modulus is proportional to the structural parameter. For the elastic strain, we followed the line of Zhu and his coauthors and assumed that it may be expressed by an algebraic equation. The model is validated by stepwise shear rate tests and hysteresis loop tests on Daqing and Zhongyuan waxy crude. The results show that the model's fitting and predictive capability is satisfactory.展开更多
Performance characteristics of partially hydrolyzed polyacrylamide (HPAM) and cross- linked polymer (CLP, Cr^3+ as the cross linker) solutions have been investigated. A Brookfield viscometer, rheometer, dynamic l...Performance characteristics of partially hydrolyzed polyacrylamide (HPAM) and cross- linked polymer (CLP, Cr^3+ as the cross linker) solutions have been investigated. A Brookfield viscometer, rheometer, dynamic light scattering system, and core flow device have been used to measure the viscosity, viscoelasticity, polymer coil dimensions, molecular configuration, flow characteristics, and profile modification. The results show that, under conditions of high salinity and low HPAM and Cr^3+ concentrations, cross-linking mainly occurred between different chains of the same HPAM molecule in the presence of Cr^3+, and a cross-linked polymer (CLP) system with a local network structure was formed. Compared with an HPAM solution of the same concentration, the apparent viscosity of the CLP solution increased slightly or remained almost unchanged, but its viscoelasticity (namely storage modulus, loss modulus, and first normal stress difference) increased, and the resistance coefficient and residual resistance coefficient increased significantly. This indicates that the CLP solution exhibits a strong capability to divert the sequentially injected polymer flood from high-permeability zones to low- permeability zones in a reservoir. Under the same HPAM concentration conditions, the dimensions of polymer coils in the CLP solution increased slightly compared with the dimensions of polymer coils in HPAM solution, which were smaller than the rock pores, indicating that the cross-linked polymer solution was well adapted to reservoir rocks. Core flood experiments show that at the same cost of reagent, the oil recovery by CLP injection (HPAM-1, Cr^3+ as the cross linker) is 3.1% to 5.2% higher than that by HPAM- 2 injection.展开更多
Cocamidopropyl hydroxyl sulfobetaine(CHSB)is one of the most promising foaming agents for high-salinity reservoirs because the salt in place facilitates its foam stability,even with salinity as high as 2×10^(5)mg...Cocamidopropyl hydroxyl sulfobetaine(CHSB)is one of the most promising foaming agents for high-salinity reservoirs because the salt in place facilitates its foam stability,even with salinity as high as 2×10^(5)mg/L.However,the synergistic effects between CHSB and salt have not been fully understood.This study utilized bulk foam tests and thin-film interferometry to comprehensively investigate the macroscopic and microscopic decay processes of CHSB foams with NaCl concentrations ranging from 2.3×10^(4)to 2.1×10^(5)mg/L.We focused on the dilatational viscoelasticity and dynamic thin-film thickness to elucidate the high-salinity-enhanced foam stability.The increase in dilatational viscoelasticity and supramolecular oscillating structural force(Π_(OS))with salinity dominated the superior stability of CHSB foam.With increasing salinity,more CHSB molecules accumulated on the surface with a lower diffusion rate,leading to high dilatational moduli and surface elasticity,thus decelerating coarsening and coalescence.Meanwhile,the number density of micelles in the thin film increased with salinity,resulting in increasedΠOS.Consequently,the energy barrier for stepwise thinning intensified,and the thin-film drainage slowed.This work conduces to understand the mechanisms behind the pronounced stability of betaine foam and can promote the widespread application of foam in harsh reservoirs.展开更多
The aim of the study was to determine the influence of wheat bran dietary fiber on wheat flour dough rheological properties.In this paper,wheat bran dietary fiber(WBDF)with different levels(0,3%,6%,9%,12%)were added t...The aim of the study was to determine the influence of wheat bran dietary fiber on wheat flour dough rheological properties.In this paper,wheat bran dietary fiber(WBDF)with different levels(0,3%,6%,9%,12%)were added to wheat flour and the characterization of dough rheological properties was conducted by rapid visco-analyzer,farinograph,as well as rotational rheometer.The results from pasting properties showed a gradual reduction in peak viscosity,trough viscosity,final viscosity and setback with increasing WBDF content.At high WBDF concentration,the significant increase of water absorption,formation time as well as weakening degree implied the harder formation of gluten network structure and the competition for water between gluten and WBDF particles.Such conclusion was in line with the findings from dynamic rheology tests,in which the doughs containing WBDF were more sensitive to strain regardless of their rigid and stiff texture.This study revealed vulnerable dough structure induced by WBDF,as well as the strengthened elastic property,elaborating the harmful effects ofWBDF on the rheological properties of doughs.展开更多
In this paper, in order to investigate the viscoelasticity of asphalt binder at the softening point temperature, more than 30 different asphalt binders were selected and tested by dynamic rheological scan method using...In this paper, in order to investigate the viscoelasticity of asphalt binder at the softening point temperature, more than 30 different asphalt binders were selected and tested by dynamic rheological scan method using a dynamic shear rheometer(DSR). The softening points and the rheological parameters of the asphalt samples were measured and analyzed. The results indicated that at the softening point temperature the neat asphalt and the SBS modified asphalt showed two different rheological states. The neat asphalt binders had a majority of viscous components in viscoelastic composition, with the phase angles being mostly higher than 80 o. The SBS modified binders had lower phase angles, with their elasticity still retained. Meanwhile, the Shapiro-Wilk normality test showed that at a confidence level of 0.05, at whatever aging state, the neat asphalt had a stable complex modulus corresponding to the softening point, which was 13.034 kPa at a standard deviation of 2.105 kPa under the same test condition. The softening point of neat asphalt binder can be calculated via the equivalent modulus rule. It is found out that there is a good relationship between the calculated and the measured softening points. And it is suggested that more data are needed to validate this finding.展开更多
基金Supported by the Specialized Research Project for LS17-2 Semi-submersible Production Platform(LSZX-2020-HN-05-0405).
文摘The taut mooring system using synthetic fiber ropes has overcome the shortcomings such as the large self-weight of the mooring lines and provides better mooring performance for the floating structures.The polyester rope has attracted much attention among numerous synthetic fiber rope materials due to its lightweight,low price,corrosion resistance,and high strength.Thus,the mooring characteristics of it are worth studying.Polyester mooring lines are flexible in deep water,when a marine structure is moored by them,the geometric nonlinearity such as large displacement,large stretch,and large bending deformation,and the material nonlinearity like viscoelastic of the polyester ropes become complex integrated problems to be studied.Considering the nonlinear phenomenon,the simulation and calculation of a polyester line were carried out by the absolute nodal coordinate formulation(ANCF)in this paper since the ANCF method has advantages in dealing with the significant deformation problems of the flexible structures.In addition,a chain mooring line was also simulated for comparison,and the results show that the polyester ropes reduce the self-weight of the mooring lines and provide sufficient mooring strength at the same time,and the nonlinear phenomenon of the polyester ropes is different from that of the chain mooring lines.
基金the sponsorship of National Natural Science Foundation of China(41974119,U1762103)Science Foundation from Innovation and Technology Support Program for Young Scientists in Colleges of Shandong province and Ministry of Science and Technology of China(2020RA2C620131)。
文摘Frequency-dependent amplitude versus offset(FAVO)inversion is a popular method to estimate the frequency-dependent elastic parameters by using amplitude and frequency information of pre-stack seismic data to guide fluid identification.Current frequency-dependent AVO inversion methods are mainly based on elastic theory without the consideration of the viscoelasticity of oil/gas.A fluid discrimination approach is proposed in this study by incorporating the viscoelasticity and relevant FAVO inversion.Based on viscoelastic and rock physics theories,a frequency-dependent viscoelastic solid-liquid decoupling fluid factor is initially constructed,and its sensitivity in fluid discrimination is compared with other conventional fluid factors.Furthermore,a novel reflectivity equation is derived in terms of the viscoelastic solid-liquid decoupling fluid factor.Due to the introduction of viscoelastic theory,the proposed reflectivity is related to frequency,which is more widely applicable than the traditional elastic reflectivity equation directly derived from the elastic reflectivity equation on frequency.Finally,a pragmatic frequency-dependent inversion method is introduced to verify the feasibility of the equation for frequency-dependent viscoelastic solid-liquid decoupling fluid factor prediction.Synthetic and field data examples demonstrate the feasibility and stability of the proposed approach in fluid discrimination.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project, China (Grant No. S30106)
文摘Based on the complex variable moving least-square (CVMLS) approximation, the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presented in this paper. The Galerkin weak form is employed to obtain the equation system, and the penalty method is used to apply the essential boundary conditions, then the corresponding formulae of the CVEFG method for two-dimensional viscoelasticity problems under the creep condition are obtained. Compared with the element-free Galerkin (EFG) method, with the same node distribution, the CVEFG method has higher precision, and to obtain the similar precision, the CVEFG method has greater computational efficiency. Some numerical examples are given to demonstrate the validity and the efficiency of the method.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10274032 and 320200265), National Natural Science Foundation of Jiangsu Province, China (Grant No BK2004081).
文摘The viscoelasticity and subharmonic generation of a kind of lipid ultrasound contrast agent are investigated. Based on the measurement of the sound attenuation spectrum, the viscoelasticity of the lipid shell is estimated by use of an optimization method. Shear modulus Gs=10MPa and shear viscosity μs=1.49N.S/m^2 are obtained. The nonlinear oscillation of the encapsulated microbubble is studied with Church's model theoretically and experimentally. Especially, the dependence of subharmonic on the incident acoustic pressure is studied. The results reveal that the development of the subharmonic undergoes three stages, i.e. occurrence, growth and saturation, and that hysteresis appears in descending ramp insonation.
基金Supported by NNSF(10601022,11061021)Supported by NSF of Inner Mongolia Au-tonomous Region(200607010106)Supported by SRP of Higher Schools of Inner Mongolia(NJ10006)
文摘H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.
基金Project supported by the Natural Science Foundation of Shanghai,China(Grant No.13ZR1415900)
文摘A hybrid natural element method(HNEM) for two-dimensional viscoelasticity problems under the creep condition is proposed. The natural neighbor interpolation is used as the test function, and the discrete equation system of the HNEM for viscoelasticity problems is obtained using the Hellinger–Reissner variational principle. In contrast to the natural element method(NEM), the HNEM can directly obtain the nodal stresses, which have higher precisions than those obtained using the moving least-square(MLS) approximation. Some numerical examples are given to demonstrate the validity and superiority of this HNEM.
基金supported in part by the National Science Foundationthe Office of Naval Research
文摘The formation of singularity and breakdown of classical solutions to the three- dimensional compressible viscoelasticity and inviscid elasticity are considered. For the compressible inviscid elastic fluids, the finite-time formation of singularity in classical solu- tions is proved for certain initial data. For the compressible viscoelastic fluids, a criterion in term of the temporal integral of the velocity gradient is obtained for the breakdown of smooth solutions.
基金supported by the National Key Research and Development Program of China(2021YFD2100902-3)the National Natural Science Foundation of China(32072258)+5 种基金Major Science and Technology Program of Heilongjiang(2020ZX08B02)Harbin University of Commerce“Young Innovative Talents”Support Program(2019CX062020CX262020CX27)the Central Financial Support for the Development of Local Colleges and Universities,Graduate Innovation Research Project of Harbin University of Commerce(YJSCX2021-698HSD)Training plan of Young Innovative Talents in Universities of Heilongjiang(UNPYSCT-2020218).
文摘The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.
基金supported by the Open Fund of Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil&Gas Reservoirs(No.KFJJ-TZ-2020-2)the National Natural Science Foundation of China(No.52104030)+1 种基金the Key Research and Development Program of Shaanxi(No.2022 KW-35)the China Fundamental Research Funds for the Central Universities。
文摘Polymer microspheres(PMs),such as polyacrylamide,have been widely applied for enhanced oil recovery(EOR),yet with environmental concerns.Here,we report a microfluid displacement technology containing a bio-based eco-friendly material,i.e.,calcium alginate(CaAlg)microspheres for EOR.Two dominant mechanisms responsible for EOR over Ca Alg fluid have been verified,including the microscopic oil displacement efficacy augmented by regulating capillary force(determined by the joint action of interfacial tension and wettability between different phases)and macroscopic sweep volume increment through profile control and mobility ratio reduction.This comprehensive effectiveness can be further impacted when the CaAlg microsphere is embellished ulteriorly by using appropriate amount of sodium dodecyl sulfonate(SDS).The core flooding and nuclear magnetic resonance(NMR)tests demonstrate that CaAlg-SDS microsphere can balance the interphase property regulation(wettability alteration and IFT reduction)and rheology properties,enabling simultaneous profile control and oil displacement.Excessive introduction of SDS will have a negative impact on rheological properties,which is not favored for EOR.Our results show that the involvement of 4-m M SDS will provide the best behavior,with an EOR rate of 34.38%.This cost-effective and environmentally-friendly bio-microspherebased microfluidic displacement technology is expected to achieve“green”oil recovery in future oilfield exploitation.
基金the financial support from the National Natural Science Foundation of China(Nos:21773161,22172108)。
文摘Viscoelastic surfactants(VES)are often used as viscous diverters in acidizing stimulation to prolong the acid consumption time and maximize zonal coverage of the acid for improving well productivity.However,the ceiling temperature of commercial VES cannot exceed 120℃in practical use because of the poor thermal stability and fragile molecular structure,hindering their implementation in hightemperature oil reservoirs,i.e.,≥150℃.Here we synthesized a novel C22-tailed diamine,N-erucaminopropyl-N,N-dimethylamine(EDPA),and examined comparatively its rheological behavior,assemblies morphology and molecular stability in 20 wt%HCl with a commercial VES,erucyl dimethyl amidopropyl betaine(EDAB).The feasibility of EDPA for acidizing stimulation was assessed by acid etching of carbonate rock with its HCl solution at 150℃.Rheological results showed that the 2.5 wt%EDPA—20 wt%HCl solution maintains stable viscosity of 90 m Pa s at 150℃for 60 min,while that of 2.0 wt%EDAB HCl solution is just 1 m Pa s under identical conditions.1H NMR spectra and cryo-TEM observations revealed that the chemical structure and self-assembled architectures of EDPA remained intact in such context,but the EDAB suffered from degradation due to the hydrolysis of the amide group,accounting for the poor heat-resistance and acid-tolerance.The reaction rate of 2.5 wt%EDPA HCl solution with carbonate rock was one order of magnitude lower than that of 20 wt%HCl solution at 150℃,underpinning the potential of EDPA to be used in the high-temperature reservoirs acidizing.This work improved the thermal tolerance of VES in highly concentrated HCl solution,paving a feasible way for the acidization of high-temperature reservoir environments(~150℃).
基金Gobierno de Navarra(Proyectos Estratégicos para Navarra 2020)the FEDER program for the financial support of project NUTRI+。
文摘Dysphagia is commonly associated with malnutrition and an increased choking risk.To overcome these complications,food designed for people with dysphagia should have an appropriate texture and a high nutritional value.In this study,six formulations of a strawberry dessert enriched in protein(calcium caseinate)and fiber(wheat dextrin or inulin)were developed using different hydrocolloids(xanthan gum,carboxymethyl cellulose or modified starch)to provide desirable texture and stability.Nutritional value was calculated and total phenolic content and antioxidant activity of the samples were analyzed.Back-extrusion test,rheological measurements and sensory analysis were performed in refrigerated and frozen samples to characterize their textural and viscoelastic properties.The high content in protein(14.7 g/100 g)and fiber(7.9-8.7 g/100 g)made possible to use the claims“high protein”and“high fiber”.Phytochemicals supplied by strawberries contributed to the antioxidant properties of the dessert.Loss tangent ranged 0.28-0.35 for all the formulations,indicating a weak gel behavior,which could be considered safe to swallow.The formulations with dextrin in combination with carboxymethyl cellulose or xanthan gum seemed to be less susceptible to structural changes during frozen storage.This work provides insights for the development of a nutrient-dense dessert that meets the requirements of people with dysphagia.
基金the support of this research from the Serbian Ministry of Education,Science and Technological Development(Grant No.451-03-68/2023-14/200325)Ministry of Defense(Grant No.VA-TT/1/22-24)。
文摘Conventional plasticizers deteriorate mechanical and viscoelastic properties of the propellants due to their migration upon aging and long-term storage,which affects reliability and safety properties during exploitation.To address this issue,conventional plasticizer,dioctyl adipate(DOA),is replaced by reactive one,castor oil(CO).In addition,three different types of HTPB were used to obtain propellants with designed viscoelastic and mechanical properties.The CO increased propellants viscosity,without a significant impact on the propellant processability,regardless to the type of prepolymer.Conversely,mechanical properties were different depending on the type of resin,which were further analyzed by gel permeation chromatography(GPC).Addition of CO formed a denser polymer network and shifted T_(g) to higher values,compared to the compositions with DOA.The tensile strength of CO-containing propellants was lower at +20℃ and +50℃ compared to the reference compositions,while the strain at maximum load and strain at break were significantly increased with pronounced plastic deformation,especially for samples at -30℃.The inclusion of CO in the propellants composition gives more room for adjusting a wide range of mechanical properties.
基金This work was financially supported by the National Natural Science Foundation of China(U20A20256,51973207)the NSAF Joint Fund(U2030203).
文摘The general development of Rheo-NMR during the last four decades as well as selective hyphenated apparatuses is presented.Based on different magnet types,the current review is divided into two categories,namely low-field and high-field NMR,while the timedomain NMR is normally applied in the former case and the frequency-domain NMR is adopted in the latter one.Depending on different rheometer cells,it can be further divided into tensile and shear mode Rheo-NMR.The combination of various rheometer cells and NMR facility guarantees our acquisition of molecular level structure and dynamics information under flow conditions,which is crucial for our understanding of the molecular origin of complex fluids.A personal perspective is also presented at last to highlight possible development in this direction.
基金supported by the National Natural Science Foundation of China(NSFC)under contract number 42274147 and 41874144。
文摘Angle domain common imaging gathers(ADCIGs)serve as not only an ideal approach for tomographic velocity modeling but also as a crucial means of mitigating low-frequency noise.Thus,they play a significant role in seismic data processing.Recently,the Poynting vector method,due to its lower computational requirements and higher resolution,has become a commonly used approach for obtaining ADCIGs.However,due to the viscoelastic properties of underground media,attenuation effects(phase dispersion and amplitude attenuation)have become a factor,which is important in seismic data processing.However,the primary applications of ADCIGs are currently confined to acoustic and elastic media.To assess the influence of attenuation and elastic effects on ADCIGs,we introduce an extraction method for ADCIGs based on fractional viscoelastic equations.This method enhances ADCIGs accuracy by simultaneously considering both the attenuation and elastic properties of underground media.Meanwhile,the S-wave quasi tensor is used to reduce the impact of P-wave energy on S-wave stress,thus further increasing the accuracy of PS-ADCIGs.In conclusion,our analysis examines the impact of the quality factor Q on ADCIGs and offers theoretical guidance for parameter inversion.
基金funded by Fondo Francisco Jose de Caldas,MINCIENCIAS and Agencia Nacional de hidrocarburos(ANH)through contract No.112721-282-2023(Project 1118-1035-9300)with Universidad Nacional de Colombia-Sede Medellin and PAREX RESOURCES COLOMBIA AG SUCURSAL。
文摘The conservation of rheological and filtration properties of drilling fluids is essential during drilling operations.However,high-pressure and high-temperature conditions may affect drilling fluid additives,leading to their degradation and reduced performance during operation.Hence,the main objective of this study is to formulate and evaluate a viscoelastic surfactant(VES)to design water-based drilling nanofluids(DNF).Silica nanomaterials are also incorporated into fluids to improve their main functional characteristics under harsh conditions.The investigation included:i)synthesis and characterization of VES through zeta potential,thermogravimetric analysis(TGA),Fourier transform infrared spectroscopy(FTIR),atomic force microscopy(AFM),and rheological behavior;ii)the effect of the presence of VES combined with silica nanoparticles on the rheological,filtration,thermal,and structural properties by steady and dynamic shear rheological,filter press,thermal aging assays,and SEM(SEM)assays,respectively;and iii)evaluation of filtration properties at the pore scale through a microfluidic approach.The rheological results showed that water-based muds(WBMs)in the presence of VES exhibited shearthinning and viscoelastic behavior slightly higher than that of WBMs with xanthan gum(XGD).Furthermore,the filtration and thermal properties of the drilling fluid improved in the presence of VES and silica nanoparticles at 0.1 wt%.Compared to the WBMs based on XGD,the 30-min filtrate volume for DNF was reduced by 75%.Moreover,the Herschel-Bulkley model was employed to represent the rheological behavior of fluids with an R2of approximately 0.99.According to SEM,laminar and spherical microstructures were observed for the WBMs based on VES and XGD,respectively.A uniform distribution of the nanoparticles was observed in the WBMs.The results obtained from microfluidic experiments indicated low dynamic filtration for fluids containing VES and silica nanoparticles.Specifically,the filtrate volume of fluids containing VES and VES with silica nanoparticles at 281 min was 0.35 and 0.04 m L,respectively.The differences in the rheological,filtration,thermal,and structural results were mainly associated with the morphological structure of VES or XGD and surface interactions with other WBMs additives.
基金the financial support from the National Natural Science Foundation of China (Grant No.51134006)Science Foundation of China University of Petroleum (Beijing) (Grant No.LLYJ-2011-55)
文摘Waxy crude oil exhibits complex rheological behavior below the pour point temperature, such as viscoelasticity, yield stress, and thixotropy, owing to the formation of a three-dimensional spongelike interlock network structure. This viscoelasto-thixotropic behavior is an important rheologieal behavior of waxy crude oils, determining the flow recovery and safe restart of crude oil pipelines. Up to now, the thixotropic models for waxy crude have been all viscoplastic models, without considering the viscoelastic part before the yield point. In this work, based on analyzing the variation of the elastic stress and viscous stress in the Mujumbar model, a new viscoelasto-plastic model is proposed, whose shear stress is separated into an elastic component and a viscous component. The elastic stress is the product of the shear modulus and elastic strain; the shear modulus is proportional to the structural parameter. For the elastic strain, we followed the line of Zhu and his coauthors and assumed that it may be expressed by an algebraic equation. The model is validated by stepwise shear rate tests and hysteresis loop tests on Daqing and Zhongyuan waxy crude. The results show that the model's fitting and predictive capability is satisfactory.
基金financial support from the National Key Technology R&D Program in the 12th Five Year Plan of PetroChina (No: 2011ZX05010-003-02)the National Key Technology R&D Program in the 12th Five Year Plan of CNOOC (No: 2011ZX05024-04-05-03)
文摘Performance characteristics of partially hydrolyzed polyacrylamide (HPAM) and cross- linked polymer (CLP, Cr^3+ as the cross linker) solutions have been investigated. A Brookfield viscometer, rheometer, dynamic light scattering system, and core flow device have been used to measure the viscosity, viscoelasticity, polymer coil dimensions, molecular configuration, flow characteristics, and profile modification. The results show that, under conditions of high salinity and low HPAM and Cr^3+ concentrations, cross-linking mainly occurred between different chains of the same HPAM molecule in the presence of Cr^3+, and a cross-linked polymer (CLP) system with a local network structure was formed. Compared with an HPAM solution of the same concentration, the apparent viscosity of the CLP solution increased slightly or remained almost unchanged, but its viscoelasticity (namely storage modulus, loss modulus, and first normal stress difference) increased, and the resistance coefficient and residual resistance coefficient increased significantly. This indicates that the CLP solution exhibits a strong capability to divert the sequentially injected polymer flood from high-permeability zones to low- permeability zones in a reservoir. Under the same HPAM concentration conditions, the dimensions of polymer coils in the CLP solution increased slightly compared with the dimensions of polymer coils in HPAM solution, which were smaller than the rock pores, indicating that the cross-linked polymer solution was well adapted to reservoir rocks. Core flood experiments show that at the same cost of reagent, the oil recovery by CLP injection (HPAM-1, Cr^3+ as the cross linker) is 3.1% to 5.2% higher than that by HPAM- 2 injection.
基金The authors would like to be grateful for the financial support of National Natural Science Foundation of China(No.51904256).
文摘Cocamidopropyl hydroxyl sulfobetaine(CHSB)is one of the most promising foaming agents for high-salinity reservoirs because the salt in place facilitates its foam stability,even with salinity as high as 2×10^(5)mg/L.However,the synergistic effects between CHSB and salt have not been fully understood.This study utilized bulk foam tests and thin-film interferometry to comprehensively investigate the macroscopic and microscopic decay processes of CHSB foams with NaCl concentrations ranging from 2.3×10^(4)to 2.1×10^(5)mg/L.We focused on the dilatational viscoelasticity and dynamic thin-film thickness to elucidate the high-salinity-enhanced foam stability.The increase in dilatational viscoelasticity and supramolecular oscillating structural force(Π_(OS))with salinity dominated the superior stability of CHSB foam.With increasing salinity,more CHSB molecules accumulated on the surface with a lower diffusion rate,leading to high dilatational moduli and surface elasticity,thus decelerating coarsening and coalescence.Meanwhile,the number density of micelles in the thin film increased with salinity,resulting in increasedΠOS.Consequently,the energy barrier for stepwise thinning intensified,and the thin-film drainage slowed.This work conduces to understand the mechanisms behind the pronounced stability of betaine foam and can promote the widespread application of foam in harsh reservoirs.
基金supported by Henan Province Colleges and Universities Young Backbone Teacher Plan (No. 2016GGJS-070)the Fundamental Research Funds for the Henan Provincial Colleges and Universities in Henan University of Technology (No. 2018RCJH08)National Natural Science Foundation of China (No. 31571873)
文摘The aim of the study was to determine the influence of wheat bran dietary fiber on wheat flour dough rheological properties.In this paper,wheat bran dietary fiber(WBDF)with different levels(0,3%,6%,9%,12%)were added to wheat flour and the characterization of dough rheological properties was conducted by rapid visco-analyzer,farinograph,as well as rotational rheometer.The results from pasting properties showed a gradual reduction in peak viscosity,trough viscosity,final viscosity and setback with increasing WBDF content.At high WBDF concentration,the significant increase of water absorption,formation time as well as weakening degree implied the harder formation of gluten network structure and the competition for water between gluten and WBDF particles.Such conclusion was in line with the findings from dynamic rheology tests,in which the doughs containing WBDF were more sensitive to strain regardless of their rigid and stiff texture.This study revealed vulnerable dough structure induced by WBDF,as well as the strengthened elastic property,elaborating the harmful effects ofWBDF on the rheological properties of doughs.
基金financially supported by the Shandong Natural Science Foundation (ZR2009FL020)the Shandong Transportation Innovation Foundation (2010Y20)
文摘In this paper, in order to investigate the viscoelasticity of asphalt binder at the softening point temperature, more than 30 different asphalt binders were selected and tested by dynamic rheological scan method using a dynamic shear rheometer(DSR). The softening points and the rheological parameters of the asphalt samples were measured and analyzed. The results indicated that at the softening point temperature the neat asphalt and the SBS modified asphalt showed two different rheological states. The neat asphalt binders had a majority of viscous components in viscoelastic composition, with the phase angles being mostly higher than 80 o. The SBS modified binders had lower phase angles, with their elasticity still retained. Meanwhile, the Shapiro-Wilk normality test showed that at a confidence level of 0.05, at whatever aging state, the neat asphalt had a stable complex modulus corresponding to the softening point, which was 13.034 kPa at a standard deviation of 2.105 kPa under the same test condition. The softening point of neat asphalt binder can be calculated via the equivalent modulus rule. It is found out that there is a good relationship between the calculated and the measured softening points. And it is suggested that more data are needed to validate this finding.