The evolution of airborne tactical networks(ATNs)is impeded by the network ossification problem.As a solution,network virtualization(NV)can provide a flexible and scalable architecture where virtual network embedding(...The evolution of airborne tactical networks(ATNs)is impeded by the network ossification problem.As a solution,network virtualization(NV)can provide a flexible and scalable architecture where virtual network embedding(VNE)is a key part.However,existing VNE algorithms cannot be optimally adopted in the virtualization of ATN due to the complex interference in aircombat field.In this context,a highly reliable VNE algorithm based on the transmission rate for ATN virtualization(TR-ATVNE)is proposed to adapt well to the specific electromagnetic environment of ATN.Our algorithm coordinates node and link mapping.In the node mapping,transmission-rate resource is firstly defined to effectively evaluate the ranking value of substrate nodes under the interference of both environmental noises and enemy attacks.Meanwhile,a feasible splitting rule is proposed for path splitting in the link mapping,considering the interference between wireless links.Simulation results reveal that our algorithm is able to improve the acceptance ratio of virtual network requests while maintaining a high revenue-to-cost ratio under the complex electromagnetic interference.展开更多
In order to improve resource utilization, it is necessary to integrate storage and data, and the emergence of cloud computing makes it possible. This paper analyzed the study of virtualization and cloud computing, pro...In order to improve resource utilization, it is necessary to integrate storage and data, and the emergence of cloud computing makes it possible. This paper analyzed the study of virtualization and cloud computing, proposed a new scheme based on virtualization, and established a shared storage platform, which made a good complement and perfected the centralized storage platform.展开更多
Virtual XML is a new approach to virtualise data resources and thus enable applications to access both XML and non-XML sources,which can benefit a variety of general-purpose software products and tools and applica- ti...Virtual XML is a new approach to virtualise data resources and thus enable applications to access both XML and non-XML sources,which can benefit a variety of general-purpose software products and tools and applica- tions dealing with stationary data and data streams.After the architectural components that enable virtual XML—a toolbox that includes a cursor model,Data Format Description Language(DFDL),and XML processing languages were illustrated,the architecture of virtual XML Documents was put forward.展开更多
This survey presents a comprehensive review of vari-ous methods and algorithms related to passing-through control of multi-robot systems in cluttered environments.Numerous studies have investigated this area,and we id...This survey presents a comprehensive review of vari-ous methods and algorithms related to passing-through control of multi-robot systems in cluttered environments.Numerous studies have investigated this area,and we identify several avenues for enhancing existing methods.This survey describes some models of robots and commonly considered control objec-tives,followed by an in-depth analysis of four types of algo-rithms that can be employed for passing-through control:leader-follower formation control,multi-robot trajectory planning,con-trol-based methods,and virtual tube planning and control.Fur-thermore,we conduct a comparative analysis of these tech-niques and provide some subjective and general evaluations.展开更多
A situation maintenance-based cooperative guidance strategy is proposed to intercept a high-speed and high-maneuverability target via inferior missiles.Reachability and relative motion analyses are conducted to develo...A situation maintenance-based cooperative guidance strategy is proposed to intercept a high-speed and high-maneuverability target via inferior missiles.Reachability and relative motion analyses are conducted to develop and pursue virtual targets,respectively.A two-stage guidance strategy under nonlinear kinematics is developed on the basis of virtual targets.The first stage optimizes the coverage and collision situation by pursuing virtual targets under specific angular constraints.The second stage subsequently intercepts the superior target based on the handover condition optimized by the first stage.Numerical simulation results are provided to compare the effectiveness and superiority of the proposed strategy with those of the reachability-based cooperative strategy(RCS),coverage-based cooperative guidance(CBCG)and augmented proportional navigation(APN)under various maneuvering modes.展开更多
This paper presents a quadcopter system for naviga-tion in outdoor urban environments.The main contributions include the hardware design,the establishment of global occu-pancy grid maps based on millimeter-wave radars...This paper presents a quadcopter system for naviga-tion in outdoor urban environments.The main contributions include the hardware design,the establishment of global occu-pancy grid maps based on millimeter-wave radars,the trajec-tory planning scheme based on optimal virtual tube methods,and the controller structure based on dynamics.The proposed system focuses on utilizing a compact and lightweight quadro-tor with sensors to achieve navigation that conforms to the direction of urban roads with high computational efficiency and safety.Our work is an application of millimeter-wave radars and virtual tube planning for obstacle avoidance in navigation.The validness and effectiveness of the proposed system are verified by experiments.展开更多
This paper presents a method of multicopter intercep-tion control based on visual servo and virtual tube in a cluttered environment.The proposed hybrid heuristic function improves the efficiency of the A*algorithm.The...This paper presents a method of multicopter intercep-tion control based on visual servo and virtual tube in a cluttered environment.The proposed hybrid heuristic function improves the efficiency of the A*algorithm.The revised objective function makes the virtual tube generating curve not only smooth but also close to the path points generated by the A*algorithm.In six dif-ferent simulation scenarios,the efficiency of the modified A*algorithm is 6.2%higher than that of the traditional A*algorithm.The efficiency of path planning and virtual tube planning is veri-fied by simulations.The effectiveness of interception control is verified by a software-in-loop(SIL)simulation.展开更多
To solve the problem of providing the best initial situation for terminal guidance when multiple missiles intercept multiple targets,a group cooperative midcourse guidance law(GCMGL)considering time-to-go is proposed....To solve the problem of providing the best initial situation for terminal guidance when multiple missiles intercept multiple targets,a group cooperative midcourse guidance law(GCMGL)considering time-to-go is proposed.Firstly,a threedimensional(3D)guidance model is established and a cooperative trajectory shaping guidance law is given.Secondly,for estimating the unknown target maneuvering acceleration,an adaptive disturbance observer(ADO)is designed,combining finitetime theory with a radial basis function(RBF)neural network,and the convergence of the estimation error is proven using Lyapunov stability theory.Then,to ensure time-to-go cooperation among missiles within the same group and across different groups,the group consensus protocols of virtual collision point mean and the inter-group cooperative consensus protocol are designed respectively.Based on the group consensus protocols,the virtual collision point cooperative guidance law is given,and the finite-time convergence is proved by Lyapunov stability theory.Simultaneously,combined with trajectory shaping guidance law,virtual collision point cooperative guidance law and the intergroup cooperative consensus protocol,the design of GCMGL considering time-to-go is given.Finally,numerical simulation results show the effectiveness and the superiority of the proposed GCMGL.展开更多
How multi-unmanned aerial vehicles(UAVs)carrying a payload pass an obstacle-dense environment is practically important.Up to now,there have been few results on safe motion planning for the multi-UAVs cooperative trans...How multi-unmanned aerial vehicles(UAVs)carrying a payload pass an obstacle-dense environment is practically important.Up to now,there have been few results on safe motion planning for the multi-UAVs cooperative transportation system(CTS)to pass through such an environment.The prob-lem is challenging because it is difficult to analyze and explicitly take into account the swing motion of the payload in planning.In this paper,a modeling method of virtual tube is proposed by fus-ing the advantages of the existing modeling algorithm for regu-lar virtual tube and the expansion environment method.The pro-posed method can not only generate a safe and smooth tube for UAVs,but also ensure the payload stays away from the dense obstacles.Simulation results show the effectiveness of the method and the safety of the planned tube.展开更多
An analysis of the interaction mechanisms between a Shaped Charge Jet(SCJ) and a single Moving Plate(MP) is proposed in this article using both experimental and numerical approaches. First, an experimental set-up is p...An analysis of the interaction mechanisms between a Shaped Charge Jet(SCJ) and a single Moving Plate(MP) is proposed in this article using both experimental and numerical approaches. First, an experimental set-up is presented. Four collision tests have been performed: two tests in Backward Moving Plate(BMP) configuration, where the plate moves in opposition to jet, and two tests in Forward Moving Plate(FMP) configuration, where the plate moves alongside the jet. Based on the virtual origin approximation,a methodology(the Virtual Origin Method, VOM) is developed to extract quantities from the X-ray images, which serve as comparative data. γSPH simulations are carried out to complete the analysis, as they well capture the disturbance dynamics observed in the experiments. Based on these complementary experimental and numerical results, a new physical description is proposed through a detailed analysis of the interaction. It is shown that the SCJ/MP interaction is driven at first order by the contact geometry. Thus, BMP and FMP configurations do not generate the same disturbances because their local flow geometries are different. In the collision point frame of reference, the BMP flows in the same direction as the jet, causing its overall deflection. On the contrary, the FMP flow opposes that of the jet leading to an alternative creation of fragments and ligaments. An in-depth study, using the VOM shows that deflection angles, fragment-ligament creation frequencies, and deflection velocities evolve as the interaction progresses through slower jet elements.展开更多
Unmanned aerial vehicles(UAVs)have become one of the key technologies to achieve future data collection due to their high mobility,rapid deployment,low cost,and the ability to establish line-of-sight communication lin...Unmanned aerial vehicles(UAVs)have become one of the key technologies to achieve future data collection due to their high mobility,rapid deployment,low cost,and the ability to establish line-of-sight communication links.However,when UAV swarm perform tasks in narrow spaces,they often encounter various spatial obstacles,building shielding materials,and high-speed node movements,which result in intermittent network communication links and cannot support the smooth comple-tion of tasks.In this paper,a high mobility and dynamic topol-ogy of the UAV swarm is particularly considered and the high dynamic mobile topology-based clustering(HDMTC)algorithm is proposed.Simulation and real flight verification results verify that the proposed HDMTC algorithm achieves higher stability of net-work,longer link expiration time(LET),and longer node lifetime,all of which improve the communication performance for UAV swarm networks.展开更多
In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a...In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application.展开更多
Technological trends in the automotive industry toward a software-defined and autonomous vehicle require a reassessment of today’s vehicle development process.The validation process soaringly shapes after starting wi...Technological trends in the automotive industry toward a software-defined and autonomous vehicle require a reassessment of today’s vehicle development process.The validation process soaringly shapes after starting with hardware-in-the-loop testing of control units and reproducing real-world maneuvers and physical interaction chains.Here,the road-to-rig approach offers a vast potential to reduce validation time and costs significantly.The present research study investigates the maneuver reproduction of drivability phenomena at a powertrain test bed.Although drivability phenomena occur in the frequency range of most up to 30∙Hz,the design and characteristics substantially impact the test setup’s validity.By utilization of modal analysis,the influence of the test bed on the mechanical characteristic is shown.Furthermore,the sensitivity of the natural modes of each component,from either specimen or test bed site,is determined.In contrast,the uncertainty of the deployed measurement equipment also affects the validity.Instead of an accuracy class indication,we apply the ISO/IEC Guide 98 to the measurement equipment and the test bed setup to increase the fidelity of the validation task.In conclusion,the present paper contributes to a traceable validity determination of the road-to-rig approach by providing objective metrics and methods.展开更多
With the aim of reducing the cost of developing internal combustion engines,while at the same time investigating different geometries,layouts and fuels,3D-CFD-CHT simulations represent an indispensable part for the de...With the aim of reducing the cost of developing internal combustion engines,while at the same time investigating different geometries,layouts and fuels,3D-CFD-CHT simulations represent an indispensable part for the development of new technologies.These tools are increasingly used by manufacturers,as a screening process before building the first prototype.This paper presents an innovative methodology for virtual engine development.The 3D-CFD tool QuickSim,developed at FKFS,allows both a significant reduction in computation time and an extension of the simulated domain for complete engine systems.This is possible thanks to a combination of coarse meshes and self-developed internal combustion engine models,which simultaneously ensure high predictability.The present work demonstrates the capabilities of this innovative methodology for the design and optimization of different engines and fuels with the goal of achieving the highest possible combustion efficiencies and pollutant reductions.The analysis focuses on the influence of different fuels such as hydrogen,methanol,synthetic gasolines and methane on different engine geometries,in combination with suitable injection and ignition systems,including passive and active pre-chambers.Lean operations as well as knock reduction are discussed,particularly for methane and hydrogen injection.Finally,it is shown how depending on the chosen fuel,an appropriate ad-hoc engine layout can be designed to increase the indicated efficiency of the respective engines.展开更多
The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft...The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft.An impact sensitivity assessment method of spacecraft based on virtual exterior wall was proposed to improve the computational efficiency.This method eliminates determination of the outermost surface elements of the spacecraft before generating the debris rays,which are assumed to originate from a non-concave virtual wall that completely wraps the spacecraft.The Dist Mesh method was adopted for the generating of the virtual wall to ensure its mesh quality.The influences of the sizes,mesh densities,shapes of the virtual wall on the efficiency and accuracy were considered to obtain the best combination of the size and mesh density of the wall and spacecraft.The results of this method were compared with those of S3DE(Survivability of Spacecraft in Space Debris Environment),BUMPER,MDPANTO,ESABASE2/Debris to verify the feasibility of the method.The PCHIP(Piecewise Cubic Hermite Interpolating Polynomial)was used to fit the size vs.flux relationship of the space debris to acquire the impact probability of OD/M with arbitrary size on the spacecraft.展开更多
With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the netw...With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the network has risen sharply.Due to the high cost of edge computing resources,coordinating the cloud and edge computing resources to improve the utilization efficiency of edge computing resources is still a considerable challenge.In this paper,we focus on optimiz-ing the placement of network services in cloud-edge environ-ments to maximize the efficiency.It is first proved that,in cloud-edge environments,placing one service function chain(SFC)integrally in the cloud or at the edge can improve the utilization efficiency of edge resources.Then a virtual network function(VNF)performance-resource(P-R)function is proposed to repre-sent the relationship between the VNF instance computing per-formance and the allocated computing resource.To select the SFCs that are most suitable to deploy at the edge,a VNF place-ment and resource allocation model is built to configure each VNF with its particular P-R function.Moreover,a heuristic recur-sive algorithm is designed called the recursive algorithm for max edge throughput(RMET)to solve the model.Through simula-tions on two scenarios,it is verified that RMET can improve the utilization efficiency of edge computing resources.展开更多
Compared with traditional feedback control,predictive control can eliminate the lag of pose control and avoid the snakelike motion of shield machines.Therefore,a shield pose prediction model was proposed based on dyna...Compared with traditional feedback control,predictive control can eliminate the lag of pose control and avoid the snakelike motion of shield machines.Therefore,a shield pose prediction model was proposed based on dynamic modeling.Firstly,the dynamic equations of shield thrust system were established to clarify the relationship between force and movement of shield machine.Secondly,an analytical model was proposed to predict future multistep pose of the shield machine.Finally,a virtual prototype model was developed to simulate the dynamic behavior of the shield machine and validate the accuracy of the proposed pose prediction method.Results reveal that the model proposed can predict the shield pose with high accuracy,which can provide a decision basis whether for manual or automatic control of shield pose.展开更多
基金supported by the National Natural Science Foundation of China(61701521)the Shaanxi Provincial Natural Science Foundation(2018JQ6074)。
文摘The evolution of airborne tactical networks(ATNs)is impeded by the network ossification problem.As a solution,network virtualization(NV)can provide a flexible and scalable architecture where virtual network embedding(VNE)is a key part.However,existing VNE algorithms cannot be optimally adopted in the virtualization of ATN due to the complex interference in aircombat field.In this context,a highly reliable VNE algorithm based on the transmission rate for ATN virtualization(TR-ATVNE)is proposed to adapt well to the specific electromagnetic environment of ATN.Our algorithm coordinates node and link mapping.In the node mapping,transmission-rate resource is firstly defined to effectively evaluate the ranking value of substrate nodes under the interference of both environmental noises and enemy attacks.Meanwhile,a feasible splitting rule is proposed for path splitting in the link mapping,considering the interference between wireless links.Simulation results reveal that our algorithm is able to improve the acceptance ratio of virtual network requests while maintaining a high revenue-to-cost ratio under the complex electromagnetic interference.
基金Supported by the National Natural Science Foundation of Heilongjiang Province (G201206)
文摘In order to improve resource utilization, it is necessary to integrate storage and data, and the emergence of cloud computing makes it possible. This paper analyzed the study of virtualization and cloud computing, proposed a new scheme based on virtualization, and established a shared storage platform, which made a good complement and perfected the centralized storage platform.
文摘Virtual XML is a new approach to virtualise data resources and thus enable applications to access both XML and non-XML sources,which can benefit a variety of general-purpose software products and tools and applica- tions dealing with stationary data and data streams.After the architectural components that enable virtual XML—a toolbox that includes a cursor model,Data Format Description Language(DFDL),and XML processing languages were illustrated,the architecture of virtual XML Documents was put forward.
文摘This survey presents a comprehensive review of vari-ous methods and algorithms related to passing-through control of multi-robot systems in cluttered environments.Numerous studies have investigated this area,and we identify several avenues for enhancing existing methods.This survey describes some models of robots and commonly considered control objec-tives,followed by an in-depth analysis of four types of algo-rithms that can be employed for passing-through control:leader-follower formation control,multi-robot trajectory planning,con-trol-based methods,and virtual tube planning and control.Fur-thermore,we conduct a comparative analysis of these tech-niques and provide some subjective and general evaluations.
基金supported by the National Natural Science Foundation of China(Grant No.62203362)the Natural Science Basic Research Program of Shaanxi(Grant No.2023-JC-QN-0569)。
文摘A situation maintenance-based cooperative guidance strategy is proposed to intercept a high-speed and high-maneuverability target via inferior missiles.Reachability and relative motion analyses are conducted to develop and pursue virtual targets,respectively.A two-stage guidance strategy under nonlinear kinematics is developed on the basis of virtual targets.The first stage optimizes the coverage and collision situation by pursuing virtual targets under specific angular constraints.The second stage subsequently intercepts the superior target based on the handover condition optimized by the first stage.Numerical simulation results are provided to compare the effectiveness and superiority of the proposed strategy with those of the reachability-based cooperative strategy(RCS),coverage-based cooperative guidance(CBCG)and augmented proportional navigation(APN)under various maneuvering modes.
基金supported by the National Key Research and Development Program of China(2022YFA1004703)the National Natural Science Foundation of China(62088101).
文摘This paper presents a quadcopter system for naviga-tion in outdoor urban environments.The main contributions include the hardware design,the establishment of global occu-pancy grid maps based on millimeter-wave radars,the trajec-tory planning scheme based on optimal virtual tube methods,and the controller structure based on dynamics.The proposed system focuses on utilizing a compact and lightweight quadro-tor with sensors to achieve navigation that conforms to the direction of urban roads with high computational efficiency and safety.Our work is an application of millimeter-wave radars and virtual tube planning for obstacle avoidance in navigation.The validness and effectiveness of the proposed system are verified by experiments.
基金supported by the National Natural Science Foundation of China(62303350).
文摘This paper presents a method of multicopter intercep-tion control based on visual servo and virtual tube in a cluttered environment.The proposed hybrid heuristic function improves the efficiency of the A*algorithm.The revised objective function makes the virtual tube generating curve not only smooth but also close to the path points generated by the A*algorithm.In six dif-ferent simulation scenarios,the efficiency of the modified A*algorithm is 6.2%higher than that of the traditional A*algorithm.The efficiency of path planning and virtual tube planning is veri-fied by simulations.The effectiveness of interception control is verified by a software-in-loop(SIL)simulation.
基金supported by the National Natural Science Foundation of China(62003264).
文摘To solve the problem of providing the best initial situation for terminal guidance when multiple missiles intercept multiple targets,a group cooperative midcourse guidance law(GCMGL)considering time-to-go is proposed.Firstly,a threedimensional(3D)guidance model is established and a cooperative trajectory shaping guidance law is given.Secondly,for estimating the unknown target maneuvering acceleration,an adaptive disturbance observer(ADO)is designed,combining finitetime theory with a radial basis function(RBF)neural network,and the convergence of the estimation error is proven using Lyapunov stability theory.Then,to ensure time-to-go cooperation among missiles within the same group and across different groups,the group consensus protocols of virtual collision point mean and the inter-group cooperative consensus protocol are designed respectively.Based on the group consensus protocols,the virtual collision point cooperative guidance law is given,and the finite-time convergence is proved by Lyapunov stability theory.Simultaneously,combined with trajectory shaping guidance law,virtual collision point cooperative guidance law and the intergroup cooperative consensus protocol,the design of GCMGL considering time-to-go is given.Finally,numerical simulation results show the effectiveness and the superiority of the proposed GCMGL.
基金supported by the National Natural Science Foundation of China(6237338661973327).
文摘How multi-unmanned aerial vehicles(UAVs)carrying a payload pass an obstacle-dense environment is practically important.Up to now,there have been few results on safe motion planning for the multi-UAVs cooperative transportation system(CTS)to pass through such an environment.The prob-lem is challenging because it is difficult to analyze and explicitly take into account the swing motion of the payload in planning.In this paper,a modeling method of virtual tube is proposed by fus-ing the advantages of the existing modeling algorithm for regu-lar virtual tube and the expansion environment method.The pro-posed method can not only generate a safe and smooth tube for UAVs,but also ensure the payload stays away from the dense obstacles.Simulation results show the effectiveness of the method and the safety of the planned tube.
基金supported by the Ministère des Armées,and the Agence de l'Innovation de Défense(AID).
文摘An analysis of the interaction mechanisms between a Shaped Charge Jet(SCJ) and a single Moving Plate(MP) is proposed in this article using both experimental and numerical approaches. First, an experimental set-up is presented. Four collision tests have been performed: two tests in Backward Moving Plate(BMP) configuration, where the plate moves in opposition to jet, and two tests in Forward Moving Plate(FMP) configuration, where the plate moves alongside the jet. Based on the virtual origin approximation,a methodology(the Virtual Origin Method, VOM) is developed to extract quantities from the X-ray images, which serve as comparative data. γSPH simulations are carried out to complete the analysis, as they well capture the disturbance dynamics observed in the experiments. Based on these complementary experimental and numerical results, a new physical description is proposed through a detailed analysis of the interaction. It is shown that the SCJ/MP interaction is driven at first order by the contact geometry. Thus, BMP and FMP configurations do not generate the same disturbances because their local flow geometries are different. In the collision point frame of reference, the BMP flows in the same direction as the jet, causing its overall deflection. On the contrary, the FMP flow opposes that of the jet leading to an alternative creation of fragments and ligaments. An in-depth study, using the VOM shows that deflection angles, fragment-ligament creation frequencies, and deflection velocities evolve as the interaction progresses through slower jet elements.
基金supported by the National Key Research and Development Program of China(2024YFB4504500)Shanghai Collaborative Innovation Project(24xtcx00500).
文摘Unmanned aerial vehicles(UAVs)have become one of the key technologies to achieve future data collection due to their high mobility,rapid deployment,low cost,and the ability to establish line-of-sight communication links.However,when UAV swarm perform tasks in narrow spaces,they often encounter various spatial obstacles,building shielding materials,and high-speed node movements,which result in intermittent network communication links and cannot support the smooth comple-tion of tasks.In this paper,a high mobility and dynamic topol-ogy of the UAV swarm is particularly considered and the high dynamic mobile topology-based clustering(HDMTC)algorithm is proposed.Simulation and real flight verification results verify that the proposed HDMTC algorithm achieves higher stability of net-work,longer link expiration time(LET),and longer node lifetime,all of which improve the communication performance for UAV swarm networks.
文摘In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application.
文摘Technological trends in the automotive industry toward a software-defined and autonomous vehicle require a reassessment of today’s vehicle development process.The validation process soaringly shapes after starting with hardware-in-the-loop testing of control units and reproducing real-world maneuvers and physical interaction chains.Here,the road-to-rig approach offers a vast potential to reduce validation time and costs significantly.The present research study investigates the maneuver reproduction of drivability phenomena at a powertrain test bed.Although drivability phenomena occur in the frequency range of most up to 30∙Hz,the design and characteristics substantially impact the test setup’s validity.By utilization of modal analysis,the influence of the test bed on the mechanical characteristic is shown.Furthermore,the sensitivity of the natural modes of each component,from either specimen or test bed site,is determined.In contrast,the uncertainty of the deployed measurement equipment also affects the validity.Instead of an accuracy class indication,we apply the ISO/IEC Guide 98 to the measurement equipment and the test bed setup to increase the fidelity of the validation task.In conclusion,the present paper contributes to a traceable validity determination of the road-to-rig approach by providing objective metrics and methods.
文摘With the aim of reducing the cost of developing internal combustion engines,while at the same time investigating different geometries,layouts and fuels,3D-CFD-CHT simulations represent an indispensable part for the development of new technologies.These tools are increasingly used by manufacturers,as a screening process before building the first prototype.This paper presents an innovative methodology for virtual engine development.The 3D-CFD tool QuickSim,developed at FKFS,allows both a significant reduction in computation time and an extension of the simulated domain for complete engine systems.This is possible thanks to a combination of coarse meshes and self-developed internal combustion engine models,which simultaneously ensure high predictability.The present work demonstrates the capabilities of this innovative methodology for the design and optimization of different engines and fuels with the goal of achieving the highest possible combustion efficiencies and pollutant reductions.The analysis focuses on the influence of different fuels such as hydrogen,methanol,synthetic gasolines and methane on different engine geometries,in combination with suitable injection and ignition systems,including passive and active pre-chambers.Lean operations as well as knock reduction are discussed,particularly for methane and hydrogen injection.Finally,it is shown how depending on the chosen fuel,an appropriate ad-hoc engine layout can be designed to increase the indicated efficiency of the respective engines.
文摘The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft.An impact sensitivity assessment method of spacecraft based on virtual exterior wall was proposed to improve the computational efficiency.This method eliminates determination of the outermost surface elements of the spacecraft before generating the debris rays,which are assumed to originate from a non-concave virtual wall that completely wraps the spacecraft.The Dist Mesh method was adopted for the generating of the virtual wall to ensure its mesh quality.The influences of the sizes,mesh densities,shapes of the virtual wall on the efficiency and accuracy were considered to obtain the best combination of the size and mesh density of the wall and spacecraft.The results of this method were compared with those of S3DE(Survivability of Spacecraft in Space Debris Environment),BUMPER,MDPANTO,ESABASE2/Debris to verify the feasibility of the method.The PCHIP(Piecewise Cubic Hermite Interpolating Polynomial)was used to fit the size vs.flux relationship of the space debris to acquire the impact probability of OD/M with arbitrary size on the spacecraft.
基金This work was supported by the Key Research and Development(R&D)Plan of Heilongjiang Province of China(JD22A001).
文摘With the continuous development of network func-tions virtualization(NFV)and software-defined networking(SDN)technologies and the explosive growth of network traffic,the requirement for computing resources in the network has risen sharply.Due to the high cost of edge computing resources,coordinating the cloud and edge computing resources to improve the utilization efficiency of edge computing resources is still a considerable challenge.In this paper,we focus on optimiz-ing the placement of network services in cloud-edge environ-ments to maximize the efficiency.It is first proved that,in cloud-edge environments,placing one service function chain(SFC)integrally in the cloud or at the edge can improve the utilization efficiency of edge resources.Then a virtual network function(VNF)performance-resource(P-R)function is proposed to repre-sent the relationship between the VNF instance computing per-formance and the allocated computing resource.To select the SFCs that are most suitable to deploy at the edge,a VNF place-ment and resource allocation model is built to configure each VNF with its particular P-R function.Moreover,a heuristic recur-sive algorithm is designed called the recursive algorithm for max edge throughput(RMET)to solve the model.Through simula-tions on two scenarios,it is verified that RMET can improve the utilization efficiency of edge computing resources.
基金Project(2023JBZY030)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(U1834208)supported by the National Natural Science Foundation of China。
文摘Compared with traditional feedback control,predictive control can eliminate the lag of pose control and avoid the snakelike motion of shield machines.Therefore,a shield pose prediction model was proposed based on dynamic modeling.Firstly,the dynamic equations of shield thrust system were established to clarify the relationship between force and movement of shield machine.Secondly,an analytical model was proposed to predict future multistep pose of the shield machine.Finally,a virtual prototype model was developed to simulate the dynamic behavior of the shield machine and validate the accuracy of the proposed pose prediction method.Results reveal that the model proposed can predict the shield pose with high accuracy,which can provide a decision basis whether for manual or automatic control of shield pose.