期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The dynamic characteristics of harvesting energy from mechanical vibration via piezoelectric conversion 被引量:4
1
作者 樊康旗 明正峰 +1 位作者 徐春辉 晁锋波 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期354-361,共8页
As an alternative power solution for low-power devices, harvesting energy from the ambient mechanical vibration has received increasing research interest in recent years. In this paper we study the transient dynamic c... As an alternative power solution for low-power devices, harvesting energy from the ambient mechanical vibration has received increasing research interest in recent years. In this paper we study the transient dynamic characteristics of a piezoelectric energy harvesting system including a piezoelectric energy harvester, a bridge rectifier, and a storage capacitor. To accomplish this, this energy harvesting system is modeled, and the charging process of the storage capacitor is investigated by employing the in-phase assumption The results indicate that the charging voltage across the storage capacitor and the gathered power increase gradually as the charging process proceeds, whereas the charging rate slows down over time as the charging voltage approaches to the peak value of the piezoelectric voltage across the piezoelectric materials. In addition, due to the added electrical damping and the change of the system natural frequency when the charging process is initiated, a sudden drop in the vibration amplitude is observed, which in turn affects the charging rate. However, the vibration amplitude begins to increase as the charging process continues, which is caused by the decrease in the electrical damping (i.e., the decrease in the energy removed from the mechanical vibration). This electromechanical coupling characteristic is also revealed by the variation of the vibration amplitude with the charging voltage. 展开更多
关键词 piezoelectric conversion mechanical vibration charging dynamics electromechanical coupling
在线阅读 下载PDF
Research on Coupling Transfer Characteristics of Vibration Energy of Free Piston Linear Generator 被引量:1
2
作者 Jingyi Tian Huihua Feng +1 位作者 Yifan Chen Shuochun Wang 《Journal of Beijing Institute of Technology》 EI CAS 2020年第4期556-567,共12页
In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(... In order to clarify the mechanism and main influencing factors of the vibration energy coupling transmission with a dual-piston structure,a thermodynamic and dynamic coupling model of the free piston linear generator(FPLG)was established.The system energy conversion,vibration energy coupling transmission,and influencing factors were studied in detail.The coupling transmission paths and the secondary influence mechanism from in-cylinder combustion on vibration energy transmission were obtained.In addition,the influence of the movement characteristics of the dual-piston on the vibration energy transmission was studied,and the typical parameter variation law was obtained,which provides theoretical guidance for the subsequent vibration reduction design of the FPLG. 展开更多
关键词 free piston linear generator(FPLG) coupled motion of dual-piston vibration energy transfer mechanism analysis of influencing factors
在线阅读 下载PDF
Effects of mechanical vibration on root development of Actinidia chinensis plantlet
3
作者 阳小成 《Journal of Chongqing University》 CAS 2007年第4期227-230,共4页
The root development of Actinidia chinensis planUets was studied in exposure to environmental stress of mechanical vibration at respectively 1 Hz, 2 Hz, 3 Hz, 4 Hz and 5 Hz. The plantlets exposed to vibration stimuli ... The root development of Actinidia chinensis planUets was studied in exposure to environmental stress of mechanical vibration at respectively 1 Hz, 2 Hz, 3 Hz, 4 Hz and 5 Hz. The plantlets exposed to vibration stimuli at all those frequencies have a larger total number and a larger total length of roots and a smaller permeability of root plasma-membrane, compared with those cultivated in an environment without vibration stress. Vibration at respectively 1 Hz, 2 Hz, 3 Hz and 4 Hz enhances root activity and the 3 Hz vibration is the most favorable. There is an obvious negative correlation between root activity and permeability of root plasma-membrane. The effects may be explained by the likelihood that mechanical Vibration at an appropriate frequency facilitates roots' absorbing water and minerals which are indispensable to inducing and synthesizing in roots some active substances favorable to growth. Nevertheless, overstress damages the integrity of root plasm-membrane, increases the permeability, and results in the disability of protecting root cells. 展开更多
关键词 mechanical vibration Actinidia chinensis plantlet root activity
在线阅读 下载PDF
Broadband energy harvesting via magnetic coupling between two movable magnets 被引量:7
4
作者 樊康旗 徐春辉 +1 位作者 王卫东 方阳 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第8期374-381,共8页
Harvesting energy from ambient mechanical vibrations by the piezoelectric effect has been proposed for powering microelectromechanical systems and replacing batteries that have a finite life span. A conventional piezo... Harvesting energy from ambient mechanical vibrations by the piezoelectric effect has been proposed for powering microelectromechanical systems and replacing batteries that have a finite life span. A conventional piezoelectric energy harvester (PEH) is usually designed as a linear resonator, and suffers from a narrow operating bandwidth. To achieve broadband energy harvesting, in this paper we introduce a concept and describe the realization of a novel nonlinear PEH. The proposed PEH consists of a primary piezoelectric cantilever beam coupled to an auxiliary piezoelectric cantilever beam through two movable magnets. For predicting the nonlinear response from the proposed PEH, lumped parameter models are established for the two beams. Both simulation and experiment reveal that for the primary beam, the introduction of magnetic coupling can expand the operating bandwidth as well as improve the output voltage. For the auxiliary beam, the magnitude of the output voltage is slightly reduced, but additional output is observed at off-resonance frequencies. Therefore, broadband energy harvesting can be obtained from both the primary beam and the auxiliary beam. 展开更多
关键词 piezoelectric conversion mechanical vibration magnetic coupling energy harvesting
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部