The autoionization branching ratios from Eu 4f76p1/26 d [J] autoionizing states to its 4f76s+(9So), 4f76s+(7So), and4f75d+(9Do) final ionic states are investigated with the combination of the three-step laser excitati...The autoionization branching ratios from Eu 4f76p1/26 d [J] autoionizing states to its 4f76s+(9So), 4f76s+(7So), and4f75d+(9Do) final ionic states are investigated with the combination of the three-step laser excitation and the velocity-map imaging technique. These different autoionizing states are excited via 4f76s6d8 DJ [J = 5/2, 7/2, and 9/2] intermediate states, respectively. The experimental photoelectron images are obtained, from which energy distributions of ejected electrons are achieved with the mathematical transformation. Furthermore, the energy dependence of the branching ratio is investigated within the autoionization resonance, by which population inversion is observed as an important characteristic.The J-dependence is also studied systematically. The validity of the well-known isolated core excitation technique used for obtaining the autoionization spectrum is also studied.展开更多
The branching ratios of ions and the angular distributions of electrons ejected from the Eu 4f^76p_(1/2)nd auto-ionizing states are investigated with the velocity-map-imaging technique.To populate the above auto-ion...The branching ratios of ions and the angular distributions of electrons ejected from the Eu 4f^76p_(1/2)nd auto-ionizing states are investigated with the velocity-map-imaging technique.To populate the above auto-ionizing states,the relevant bound Rydberg states have to be detected first.Two new bound Rydberg states are identified in the region between41150 cm^(-1)and 44580 cm^(-1),from which auto-ionization spectra of the Eu 4f^76p_(1/2)nd states are observed with isolated core excitation method.With all preparations above,the branching ratios from the above auto-ionizing states to different final ionic states and the angular distributions of electrons ejected from these processes are measured systematically.Energy dependence of branching ratios and anisotropy parameters within the auto-ionization spectra are carefully analyzed,followed by a qualitative interpretation.展开更多
Metal carbides play an important role in catalysis and functional materials.However,the structural characterization of metal carbide clusters has been proven to be a challenging experimental target due to the difficul...Metal carbides play an important role in catalysis and functional materials.However,the structural characterization of metal carbide clusters has been proven to be a challenging experimental target due to the difficulty in size selection.Here we use the size-specific photoelectron velocity-map imaging spectroscopy to study the structures and properties of platinum carbide clusters.Quantum chemical calculations are carried out to identify the structures and to assign the experimental spectra.The results indicate that the cluster size of the chain-to-ring structural evolution for the PtC_(n)^(-)anions occurs at n=14,whereas that for the PtC_(n) neutrals at n=10,revealing a significant effect of charge on the structures of metal carbides.The greatest importance of these building blocks is the strong preference of the Pt atom to expose in the outer side of the chain or ring,exhibiting the active sites for catalyzing potential reactions.These findings provide unique spectroscopic snapshots for the formation and growth of platinum carbide clusters and have important implications in the development of related single-atom catalysts with isolated metal atoms dispersed on supports.展开更多
Spectroscopic characterization of CO activation on multiple metal-containing catalysts remains an important and challenging goal for identifying the structure and nature of active site in many industrial processes suc...Spectroscopic characterization of CO activation on multiple metal-containing catalysts remains an important and challenging goal for identifying the structure and nature of active site in many industrial processes such as Fischer-Tropsch chemistry and alcohol synthesis.Here,we use mass-selected photoelectron velocity-map imaging spectroscopy and quantum chemical calculations to study the reactions of CO molecules with several heterobinuclear transition metal-iron clusters M-Fe(M=Ti,V,Cr).The mass spectra reveal the favorable formation of MFe(CO)_(4)^(-)with relatively high thermodynamic stability.The MFe(CO)_(4)^(-)(M=Ti,V,Cr) complexes are established to have a metal-Fe bonded M-Fe(CO)_(4) structure with C_(3 v) geometry.While the positive charge and unpaired electrons are mainly located on the M atom,the natural charge of Fe(CO)_(4) is about-2 e.The MFe(CO)_(4)^(-)(M=Ti,V,Cr) can be seen as being formed via the interactions between the M^(+)fragment and the [Fe(CO)_(4)]^(2-)core,which satisfies the 18-electron rule.The CO molecules are remarkably activated in these MFe(CO)_(4)^(-).These results shed insight into the structure-reactivity relationship of heterobinuclear transition metal carbonyls and would have important implications for understanding of CO activation on alloy surfaces.展开更多
Electron affinities(EA)of most lanthanide elements still remain unknown owing to their relatively lower EA values and the fairly complicated electronic structures.In the present work,we report the high-resolution phot...Electron affinities(EA)of most lanthanide elements still remain unknown owing to their relatively lower EA values and the fairly complicated electronic structures.In the present work,we report the high-resolution photoelectron spectra of atomic cerium anion Ce−using the slow electron velocity-map imaging method in combination with a cold ion trap.The electron affinity of Ce is determined to be 4840.62(21)cm^-1 or 0.600160(26)eV.Moreover,several excited states of Ce(^4H9/2,^4I9/2,^2H9/2,^2G9/2,^2G7/2,^4H13/2,^2F5/2,and ^4I13/2)are observed.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11174218)
文摘The autoionization branching ratios from Eu 4f76p1/26 d [J] autoionizing states to its 4f76s+(9So), 4f76s+(7So), and4f75d+(9Do) final ionic states are investigated with the combination of the three-step laser excitation and the velocity-map imaging technique. These different autoionizing states are excited via 4f76s6d8 DJ [J = 5/2, 7/2, and 9/2] intermediate states, respectively. The experimental photoelectron images are obtained, from which energy distributions of ejected electrons are achieved with the mathematical transformation. Furthermore, the energy dependence of the branching ratio is investigated within the autoionization resonance, by which population inversion is observed as an important characteristic.The J-dependence is also studied systematically. The validity of the well-known isolated core excitation technique used for obtaining the autoionization spectrum is also studied.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174218)
文摘The branching ratios of ions and the angular distributions of electrons ejected from the Eu 4f^76p_(1/2)nd auto-ionizing states are investigated with the velocity-map-imaging technique.To populate the above auto-ionizing states,the relevant bound Rydberg states have to be detected first.Two new bound Rydberg states are identified in the region between41150 cm^(-1)and 44580 cm^(-1),from which auto-ionization spectra of the Eu 4f^76p_(1/2)nd states are observed with isolated core excitation method.With all preparations above,the branching ratios from the above auto-ionizing states to different final ionic states and the angular distributions of electrons ejected from these processes are measured systematically.Energy dependence of branching ratios and anisotropy parameters within the auto-ionization spectra are carefully analyzed,followed by a qualitative interpretation.
基金supported by the National Natural Science Foundation of China(22273101,22103082,22125303,92061203,and 22288201)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(CAS)(2020187)+3 种基金the Innovation Program for Quantum Science and Technology(2021ZD0303304)Chinese Academy of Sciences(GJJSTD20220001)Dalian Institute of Chemical Physics(DICP DCLS201702)K.C.Wong Education Foundation(GJTD-201806)。
文摘Metal carbides play an important role in catalysis and functional materials.However,the structural characterization of metal carbide clusters has been proven to be a challenging experimental target due to the difficulty in size selection.Here we use the size-specific photoelectron velocity-map imaging spectroscopy to study the structures and properties of platinum carbide clusters.Quantum chemical calculations are carried out to identify the structures and to assign the experimental spectra.The results indicate that the cluster size of the chain-to-ring structural evolution for the PtC_(n)^(-)anions occurs at n=14,whereas that for the PtC_(n) neutrals at n=10,revealing a significant effect of charge on the structures of metal carbides.The greatest importance of these building blocks is the strong preference of the Pt atom to expose in the outer side of the chain or ring,exhibiting the active sites for catalyzing potential reactions.These findings provide unique spectroscopic snapshots for the formation and growth of platinum carbide clusters and have important implications in the development of related single-atom catalysts with isolated metal atoms dispersed on supports.
基金supported by the National Natural Science Foundation of China (21688102, 21873097, and 92061203)the Youth Innovation Promotion Association of the Chinese Academy of Sciences (CAS)(2020187)+3 种基金the Strategic Priority Research Program of CAS (XDB17000000)CAS (GJJSTD20190002)the International Partnership Program of CAS (121421KYSB20170012)the K.C.Wong Education Foundation (GJTD-2018-06)。
文摘Spectroscopic characterization of CO activation on multiple metal-containing catalysts remains an important and challenging goal for identifying the structure and nature of active site in many industrial processes such as Fischer-Tropsch chemistry and alcohol synthesis.Here,we use mass-selected photoelectron velocity-map imaging spectroscopy and quantum chemical calculations to study the reactions of CO molecules with several heterobinuclear transition metal-iron clusters M-Fe(M=Ti,V,Cr).The mass spectra reveal the favorable formation of MFe(CO)_(4)^(-)with relatively high thermodynamic stability.The MFe(CO)_(4)^(-)(M=Ti,V,Cr) complexes are established to have a metal-Fe bonded M-Fe(CO)_(4) structure with C_(3 v) geometry.While the positive charge and unpaired electrons are mainly located on the M atom,the natural charge of Fe(CO)_(4) is about-2 e.The MFe(CO)_(4)^(-)(M=Ti,V,Cr) can be seen as being formed via the interactions between the M^(+)fragment and the [Fe(CO)_(4)]^(2-)core,which satisfies the 18-electron rule.The CO molecules are remarkably activated in these MFe(CO)_(4)^(-).These results shed insight into the structure-reactivity relationship of heterobinuclear transition metal carbonyls and would have important implications for understanding of CO activation on alloy surfaces.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91736102 and 11974199)the National Key R&D Program of China(Grant No.2018YFA0306504).
文摘Electron affinities(EA)of most lanthanide elements still remain unknown owing to their relatively lower EA values and the fairly complicated electronic structures.In the present work,we report the high-resolution photoelectron spectra of atomic cerium anion Ce−using the slow electron velocity-map imaging method in combination with a cold ion trap.The electron affinity of Ce is determined to be 4840.62(21)cm^-1 or 0.600160(26)eV.Moreover,several excited states of Ce(^4H9/2,^4I9/2,^2H9/2,^2G9/2,^2G7/2,^4H13/2,^2F5/2,and ^4I13/2)are observed.