目的为了解决车载边缘计算中用户服务质量低以及边缘节点资源不足的问题,方法结合车载边缘计算和停车边缘计算技术,提出“端-多边-云”协作计算卸载模型,并设计基于DRL的协作计算卸载与资源分配算法(cooperative computation offloading...目的为了解决车载边缘计算中用户服务质量低以及边缘节点资源不足的问题,方法结合车载边缘计算和停车边缘计算技术,提出“端-多边-云”协作计算卸载模型,并设计基于DRL的协作计算卸载与资源分配算法(cooperative computation offloading and resource allocation algorithm based on DRL,DRL-CCORA)。首先,将路边停放车辆的算力构建成停车边缘服务器(parking edge server,PES),联合边缘节点为车辆任务提供计算服务,减轻边缘节点的负载;其次,将计算卸载与资源分配问题转化为马尔可夫决策过程模型,综合时延、能耗和服务质量构建奖励函数,并根据任务需要的计算资源、任务的最大容忍时延以及车辆到PES的距离对计算任务进行预分类处理,缩减问题的规模;最后,利用双深度Q网络(double deep q network,DDQN)算法获得计算卸载和资源分配的最优策略。结果结果表明,相较于对比算法,所提算法的用户总服务质量提高了6.25%,任务的完成率提高了10.26%,任务计算的时延和能耗分别降低了18.8%、5.26%。结论所提算法优化了边缘节点的负载,降低了任务完成的时延和能耗,提高了用户的服务质量。展开更多
针对车辆边缘计算(VEC)中存在的用户体验质量需求不断增加、高度移动车辆引起的链路状态获取困难和异构边缘节点为车辆提供资源的时变性等问题,制定一种联合任务卸载和资源优化(JTO-RO)的VEC方案。首先,在不失一般性的前提下,综合考虑...针对车辆边缘计算(VEC)中存在的用户体验质量需求不断增加、高度移动车辆引起的链路状态获取困难和异构边缘节点为车辆提供资源的时变性等问题,制定一种联合任务卸载和资源优化(JTO-RO)的VEC方案。首先,在不失一般性的前提下,综合考虑边缘内和边缘间干扰,提出一种车辆到基础设施(V2I)的传输模型,该模型通过引入非正交多址接入(NOMA)技术使边缘节点不仅无需依赖链路状态信息,还可以提升信道容量;其次,为了提高系统的性能和效率,设计一种多智能体双延迟深度确定性(MATD3)算法用于制定任务卸载策略,这些策略可通过与环境的交互学习进行动态调整;再次,联合考虑2种策略的协同作用,并制定将最大化任务服务比率作为目标的优化方案,从而满足不断提升的用户体验质量需求;最后,对真实车辆轨迹数据集进行仿真实验。结果表明,相较于当前具有代表性的3种方案(分别以随机卸载(RO)算法、D4PG(Distributed Distributional Deep Deterministic Policy Gradient)算法和MADDPG(Multi-Agent Deep Deterministic Policy Gradient)算法为任务卸载算法的方案)在3类场景下(普通场景、任务密集型场景和时延敏感型场景),所提方案的平均服务比率分别提高了20%、10%和29%以上,验证了该方案的优势和有效性。展开更多
文摘目的为了解决车载边缘计算中用户服务质量低以及边缘节点资源不足的问题,方法结合车载边缘计算和停车边缘计算技术,提出“端-多边-云”协作计算卸载模型,并设计基于DRL的协作计算卸载与资源分配算法(cooperative computation offloading and resource allocation algorithm based on DRL,DRL-CCORA)。首先,将路边停放车辆的算力构建成停车边缘服务器(parking edge server,PES),联合边缘节点为车辆任务提供计算服务,减轻边缘节点的负载;其次,将计算卸载与资源分配问题转化为马尔可夫决策过程模型,综合时延、能耗和服务质量构建奖励函数,并根据任务需要的计算资源、任务的最大容忍时延以及车辆到PES的距离对计算任务进行预分类处理,缩减问题的规模;最后,利用双深度Q网络(double deep q network,DDQN)算法获得计算卸载和资源分配的最优策略。结果结果表明,相较于对比算法,所提算法的用户总服务质量提高了6.25%,任务的完成率提高了10.26%,任务计算的时延和能耗分别降低了18.8%、5.26%。结论所提算法优化了边缘节点的负载,降低了任务完成的时延和能耗,提高了用户的服务质量。
文摘针对车辆边缘计算(VEC)中存在的用户体验质量需求不断增加、高度移动车辆引起的链路状态获取困难和异构边缘节点为车辆提供资源的时变性等问题,制定一种联合任务卸载和资源优化(JTO-RO)的VEC方案。首先,在不失一般性的前提下,综合考虑边缘内和边缘间干扰,提出一种车辆到基础设施(V2I)的传输模型,该模型通过引入非正交多址接入(NOMA)技术使边缘节点不仅无需依赖链路状态信息,还可以提升信道容量;其次,为了提高系统的性能和效率,设计一种多智能体双延迟深度确定性(MATD3)算法用于制定任务卸载策略,这些策略可通过与环境的交互学习进行动态调整;再次,联合考虑2种策略的协同作用,并制定将最大化任务服务比率作为目标的优化方案,从而满足不断提升的用户体验质量需求;最后,对真实车辆轨迹数据集进行仿真实验。结果表明,相较于当前具有代表性的3种方案(分别以随机卸载(RO)算法、D4PG(Distributed Distributional Deep Deterministic Policy Gradient)算法和MADDPG(Multi-Agent Deep Deterministic Policy Gradient)算法为任务卸载算法的方案)在3类场景下(普通场景、任务密集型场景和时延敏感型场景),所提方案的平均服务比率分别提高了20%、10%和29%以上,验证了该方案的优势和有效性。