在经典的车辆路径优化问题的基础上,考虑顾客有同时取货和送货的需求,且每个顾客都有独立的时间窗,研究带时间窗和同时取送货的车辆路径问题(VRPSPDTW)。提出模拟退火算法求解该问题,算法使用Residual capacity and radial surcharge(RC...在经典的车辆路径优化问题的基础上,考虑顾客有同时取货和送货的需求,且每个顾客都有独立的时间窗,研究带时间窗和同时取送货的车辆路径问题(VRPSPDTW)。提出模拟退火算法求解该问题,算法使用Residual capacity and radial surcharge(RCRS)算法求得初始解,通过模拟退火过程和4种局部搜索方法(路径内搜索:2-opt法和or-opt法;路径间搜索:swap/shift法和2-opt*法)进行优化,并选取Wang和Chen测试数据集中的15个算例对算法性能进行测试。测试结果表明,提出的模拟退火算法优于Wang和Chen的遗传算法,能有效地求解VRPSPDTW问题,并且可以被灵活的扩展解决其他车辆路径问题和组合优化问题。展开更多
目的针对生鲜产品冷链配送环节存在的配送成本高、产品易腐坏等问题,研究考虑新鲜度的生鲜冷链物流同时取送货车辆路径优化。方法首先考虑同时取送货的场景,以及生鲜产品在不同场景下的新鲜度衰减速度,以车辆使用成本、货损成本、时间...目的针对生鲜产品冷链配送环节存在的配送成本高、产品易腐坏等问题,研究考虑新鲜度的生鲜冷链物流同时取送货车辆路径优化。方法首先考虑同时取送货的场景,以及生鲜产品在不同场景下的新鲜度衰减速度,以车辆使用成本、货损成本、时间惩罚成本之和最小为目标,建立考虑新鲜度的生鲜冷链物流同时取送货车辆路径优化模型;其次,基于此模型,设计一种带大邻域搜索思想的头脑风暴算法(Brain storm optimization with large neighborhood search algorithm,BSO-LNS)进行求解;然后,通过与CPLEX求解器、遗传算法的对比分析,验证所建模型的合理性及求解算法的有效性;最后,求解实际冷链物流企业的算例,验证本文模型在实际冷链物流配送中的应用价值。结果基于不同规模的算例,与CPLEX求解器、遗传算法相比,所设计的算法的求解效果更好,同时其求解速度更快。结论所提模型、算法可有效减少生鲜产品品质损耗,同时兼顾对总成本的控制,进而为生鲜物流企业提供了方法参考和决策依据。展开更多
针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化...针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化目标的数学模型;并在传统蚁群算法的基础上,利用节约启发式构造初始解初始化信息素,改进状态转移规则,引入局部搜索策略,提出一种带自适应大邻域搜索的混合蚁群算法(Ant Colony Optimization with Adaptive Large Neighborhood Search,ACO-ALNS)进行求解;最后,分别选取基准问题算例和改编生成TDVRPSPDTW算例进行实验。实验结果表明:本文提出的ACO-ALNS算法可有效解决TDVRPSPDTW的基准问题;相较于模拟退火算法和带局部搜索的蚁群算法,本文算法求解得到的总配送成本最优值平均分别改善7.56%和2.90%;另外,相比于仅考虑碳排放或配送时间的模型,本文所构建的模型综合多种因素,总配送成本平均分别降低4.38%和3.18%,可有效提高物流企业的经济效益。展开更多
目的针对当前物流背景下普遍出现的送货公司外包、退换货频繁等问题,结合现有的碳排放政策,提出低碳背景下开放式同时送取货选址−路径模型(Low-Carbon Open Location-routing Problem with Simultaneous Pickup and Delivery Problem,LO...目的针对当前物流背景下普遍出现的送货公司外包、退换货频繁等问题,结合现有的碳排放政策,提出低碳背景下开放式同时送取货选址−路径模型(Low-Carbon Open Location-routing Problem with Simultaneous Pickup and Delivery Problem,LOLRPSPD),并通过改进野马算法进行求解。方法首先设计一种新的解码方式,使得原离散问题可以采用连续算法求解。之后,运用哈尔顿序列生成初始解,改进非线性进化概率因子,使用模拟二进制交叉,增加变异操作,以及精英保留、设置连续失败重新初始化等步骤,改进野马算法。最后,通过6组不同大小的算例将改进野马算法与原始野马算法、模拟退火算法、粒子群算法、遗传算法进行对比。结果针对中大型算例,改进野马算法远超原始野马算法。针对小型算例,在确保准确率的同时,改进野马算法对比各经典算法也在速度上具有优势。结论提出的LOLRPSD模型具备合理性,改进的野马算法针对选址路径问题具有较好的搜索能力。展开更多
文摘在经典的车辆路径优化问题的基础上,考虑顾客有同时取货和送货的需求,且每个顾客都有独立的时间窗,研究带时间窗和同时取送货的车辆路径问题(VRPSPDTW)。提出模拟退火算法求解该问题,算法使用Residual capacity and radial surcharge(RCRS)算法求得初始解,通过模拟退火过程和4种局部搜索方法(路径内搜索:2-opt法和or-opt法;路径间搜索:swap/shift法和2-opt*法)进行优化,并选取Wang和Chen测试数据集中的15个算例对算法性能进行测试。测试结果表明,提出的模拟退火算法优于Wang和Chen的遗传算法,能有效地求解VRPSPDTW问题,并且可以被灵活的扩展解决其他车辆路径问题和组合优化问题。
文摘目的针对生鲜产品冷链配送环节存在的配送成本高、产品易腐坏等问题,研究考虑新鲜度的生鲜冷链物流同时取送货车辆路径优化。方法首先考虑同时取送货的场景,以及生鲜产品在不同场景下的新鲜度衰减速度,以车辆使用成本、货损成本、时间惩罚成本之和最小为目标,建立考虑新鲜度的生鲜冷链物流同时取送货车辆路径优化模型;其次,基于此模型,设计一种带大邻域搜索思想的头脑风暴算法(Brain storm optimization with large neighborhood search algorithm,BSO-LNS)进行求解;然后,通过与CPLEX求解器、遗传算法的对比分析,验证所建模型的合理性及求解算法的有效性;最后,求解实际冷链物流企业的算例,验证本文模型在实际冷链物流配送中的应用价值。结果基于不同规模的算例,与CPLEX求解器、遗传算法相比,所设计的算法的求解效果更好,同时其求解速度更快。结论所提模型、算法可有效减少生鲜产品品质损耗,同时兼顾对总成本的控制,进而为生鲜物流企业提供了方法参考和决策依据。
文摘针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化目标的数学模型;并在传统蚁群算法的基础上,利用节约启发式构造初始解初始化信息素,改进状态转移规则,引入局部搜索策略,提出一种带自适应大邻域搜索的混合蚁群算法(Ant Colony Optimization with Adaptive Large Neighborhood Search,ACO-ALNS)进行求解;最后,分别选取基准问题算例和改编生成TDVRPSPDTW算例进行实验。实验结果表明:本文提出的ACO-ALNS算法可有效解决TDVRPSPDTW的基准问题;相较于模拟退火算法和带局部搜索的蚁群算法,本文算法求解得到的总配送成本最优值平均分别改善7.56%和2.90%;另外,相比于仅考虑碳排放或配送时间的模型,本文所构建的模型综合多种因素,总配送成本平均分别降低4.38%和3.18%,可有效提高物流企业的经济效益。
文摘目的针对当前物流背景下普遍出现的送货公司外包、退换货频繁等问题,结合现有的碳排放政策,提出低碳背景下开放式同时送取货选址−路径模型(Low-Carbon Open Location-routing Problem with Simultaneous Pickup and Delivery Problem,LOLRPSPD),并通过改进野马算法进行求解。方法首先设计一种新的解码方式,使得原离散问题可以采用连续算法求解。之后,运用哈尔顿序列生成初始解,改进非线性进化概率因子,使用模拟二进制交叉,增加变异操作,以及精英保留、设置连续失败重新初始化等步骤,改进野马算法。最后,通过6组不同大小的算例将改进野马算法与原始野马算法、模拟退火算法、粒子群算法、遗传算法进行对比。结果针对中大型算例,改进野马算法远超原始野马算法。针对小型算例,在确保准确率的同时,改进野马算法对比各经典算法也在速度上具有优势。结论提出的LOLRPSD模型具备合理性,改进的野马算法针对选址路径问题具有较好的搜索能力。