The pressure and horizontal particle velocity combined descriptions in the very low frequency acoustic field of shallow wa- ter integrated with the concept of effective depth of Pekeris wave- guide is proposed, especi...The pressure and horizontal particle velocity combined descriptions in the very low frequency acoustic field of shallow wa- ter integrated with the concept of effective depth of Pekeris wave- guide is proposed, especially the active component of the pressure and horizontal particle velocity cross-spectrum, also called ho- rizontal complex cross acoustic intensity, when only two normal modes are trapped in the waveguide. Both the approximate theo- retic analysis and the numerical results show that the sign of the horizontal complex cross acoustic intensity active component is independent of the range when vertically deployed receiving dual sensors are placed in appropriate depths, the sum of which is equal to the waveguide effective depth, so it can be used to tell whether the sound source is near the surface or underwater; while the range rate is expected to be measured by utilizing the sign distribution characteristic of the reactive component. The further robustness analysis of the depth classification algorithm shows that the existence of shear waves in semi infinite basement and the change of acoustic velocity profiles have few effects on the application of this method, and the seabed attenuation will limit the detection range, but the algorithm still has a good robustness in the valid detection range.展开更多
Guidance path-planning and following are two core technologies used for controlling un-manned aerial vehicles(UAVs)in both military and civilian applications.However,only a few approaches treat both the technologies s...Guidance path-planning and following are two core technologies used for controlling un-manned aerial vehicles(UAVs)in both military and civilian applications.However,only a few approaches treat both the technologies simultaneously.In this study,an innovative hybrid gradient vector fields for path-following guidance(HGVFs-PFG)algorithm is proposed to control fixed-wing UAVs to follow a generated guidance path and oriented target curves in three-dimensional space,which can be any combination of straight lines,arcs,and helixes as motion primitives.The algorithm aids the creation of vector fields(VFs)for these motion primitives as well as the design of an effective switching strategy to ensure that only one VF is activated at any time to ensure that the complex paths are followed completely.The strategies designed in earlier studies have flaws that prevent the UAV from following arcs that make its turning angle too large.The proposed switching strategy solves this problem by introducing the concept of the virtual way-points.Finally,the performance of the HGVFs-PFG algorithm is verified using a reducedorder autopilot and four representative simulation scenarios.The simulation considers the constraints of the aircraft,and its results indicate that the algorithm performs well in following both lateral and longitudinal control,particularly for curved paths.In general,the proposed technical method is practical and competitive.展开更多
According to the integral relationship between the vector magnetic flux density on a spatial point and that over a closed surface around magnetic sources,a technique for the extrapolation of vector magnetic field of a...According to the integral relationship between the vector magnetic flux density on a spatial point and that over a closed surface around magnetic sources,a technique for the extrapolation of vector magnetic field of a ferromagnetic object is given without computing scalar potential and its gradient. The vector magnetic flux density on a remote spatial point can be extrapolated by surface integral from the vector values over a closed measureed surface around the ferromagnetic object. The correctness of the technique testified by a special example and simulation. The experimented result shows that its accuracy is satisfying and the execution time is less than 1 second.展开更多
In order to achieve a high precision in three-dimensional(3D) multi-camera measurement system, an efficient multi-cameracalibration method is proposed. A stitching method of large scalecalibration targets is deduced...In order to achieve a high precision in three-dimensional(3D) multi-camera measurement system, an efficient multi-cameracalibration method is proposed. A stitching method of large scalecalibration targets is deduced, and a fundamental of multi-cameracalibration based on the large scale calibration target is provided.To avoid the shortcomings of the method, the vector differencesof reprojection error with the presence of the constraint conditionof the constant rigid body transformation is modelled, and mini-mized by the Levenberg-Marquardt (LM) method. Results of thesimulation and observation data calibration experiment show thatthe accuracy of the system calibrated by the proposed methodreaches 2 mm when measuring distance section of 20 000 mmand scale section of 7 000 mm × 7 000 mm. Consequently, theproposed method of multi-camera calibration performs better thanthe fundamental in stability. This technique offers a more uniformerror distribution for measuring large scale space.展开更多
SLAM(simultaneous localization and mapping)是无人载体实现自主导航定位的关键技术。针对传统视觉SLAM系统在动态场景下导航定位精度低的问题,在视觉SLAM系统的基础上引入惯性传感器(inertial measure-ment unit)。在ORB-SLAM3系统...SLAM(simultaneous localization and mapping)是无人载体实现自主导航定位的关键技术。针对传统视觉SLAM系统在动态场景下导航定位精度低的问题,在视觉SLAM系统的基础上引入惯性传感器(inertial measure-ment unit)。在ORB-SLAM3系统的基础上设计了一种面向动态环境的视觉惯性SLAM系统。提出一种基于向量场一致性(vector field consensus,VFC)的稀疏光流法来追踪图像的特征点并计算基础矩阵,分别利用光流对极几何约束和惯性传感器信息计算特征点的动态概率,提出一种联合的动态特征检测方法计算特征点的总动态概率,并将动态概率大于阈值的特征点进行剔除,在SLAM系统的前端实现了视觉信息与惯性运动信息的紧耦合。在数据集上的实验结果表明,该视觉惯性SLAM改进算法有良好的性能表现。展开更多
基金supported by the National Natural Science Foundation of China(1140440611374072)
文摘The pressure and horizontal particle velocity combined descriptions in the very low frequency acoustic field of shallow wa- ter integrated with the concept of effective depth of Pekeris wave- guide is proposed, especially the active component of the pressure and horizontal particle velocity cross-spectrum, also called ho- rizontal complex cross acoustic intensity, when only two normal modes are trapped in the waveguide. Both the approximate theo- retic analysis and the numerical results show that the sign of the horizontal complex cross acoustic intensity active component is independent of the range when vertically deployed receiving dual sensors are placed in appropriate depths, the sum of which is equal to the waveguide effective depth, so it can be used to tell whether the sound source is near the surface or underwater; while the range rate is expected to be measured by utilizing the sign distribution characteristic of the reactive component. The further robustness analysis of the depth classification algorithm shows that the existence of shear waves in semi infinite basement and the change of acoustic velocity profiles have few effects on the application of this method, and the seabed attenuation will limit the detection range, but the algorithm still has a good robustness in the valid detection range.
基金the support of the National Natural Science Foundation of China under Grant No.62076204 and Grant No.62006193in part by the Postdoctoral Science Foundation of China under Grants No.2021M700337in part by the Fundamental Research Funds for the Central Universities under Grant No.3102019ZX016。
文摘Guidance path-planning and following are two core technologies used for controlling un-manned aerial vehicles(UAVs)in both military and civilian applications.However,only a few approaches treat both the technologies simultaneously.In this study,an innovative hybrid gradient vector fields for path-following guidance(HGVFs-PFG)algorithm is proposed to control fixed-wing UAVs to follow a generated guidance path and oriented target curves in three-dimensional space,which can be any combination of straight lines,arcs,and helixes as motion primitives.The algorithm aids the creation of vector fields(VFs)for these motion primitives as well as the design of an effective switching strategy to ensure that only one VF is activated at any time to ensure that the complex paths are followed completely.The strategies designed in earlier studies have flaws that prevent the UAV from following arcs that make its turning angle too large.The proposed switching strategy solves this problem by introducing the concept of the virtual way-points.Finally,the performance of the HGVFs-PFG algorithm is verified using a reducedorder autopilot and four representative simulation scenarios.The simulation considers the constraints of the aircraft,and its results indicate that the algorithm performs well in following both lateral and longitudinal control,particularly for curved paths.In general,the proposed technical method is practical and competitive.
文摘According to the integral relationship between the vector magnetic flux density on a spatial point and that over a closed surface around magnetic sources,a technique for the extrapolation of vector magnetic field of a ferromagnetic object is given without computing scalar potential and its gradient. The vector magnetic flux density on a remote spatial point can be extrapolated by surface integral from the vector values over a closed measureed surface around the ferromagnetic object. The correctness of the technique testified by a special example and simulation. The experimented result shows that its accuracy is satisfying and the execution time is less than 1 second.
基金supported by the National Natural Science Foundation of China(61473100)
文摘In order to achieve a high precision in three-dimensional(3D) multi-camera measurement system, an efficient multi-cameracalibration method is proposed. A stitching method of large scalecalibration targets is deduced, and a fundamental of multi-cameracalibration based on the large scale calibration target is provided.To avoid the shortcomings of the method, the vector differencesof reprojection error with the presence of the constraint conditionof the constant rigid body transformation is modelled, and mini-mized by the Levenberg-Marquardt (LM) method. Results of thesimulation and observation data calibration experiment show thatthe accuracy of the system calibrated by the proposed methodreaches 2 mm when measuring distance section of 20 000 mmand scale section of 7 000 mm × 7 000 mm. Consequently, theproposed method of multi-camera calibration performs better thanthe fundamental in stability. This technique offers a more uniformerror distribution for measuring large scale space.
文摘SLAM(simultaneous localization and mapping)是无人载体实现自主导航定位的关键技术。针对传统视觉SLAM系统在动态场景下导航定位精度低的问题,在视觉SLAM系统的基础上引入惯性传感器(inertial measure-ment unit)。在ORB-SLAM3系统的基础上设计了一种面向动态环境的视觉惯性SLAM系统。提出一种基于向量场一致性(vector field consensus,VFC)的稀疏光流法来追踪图像的特征点并计算基础矩阵,分别利用光流对极几何约束和惯性传感器信息计算特征点的动态概率,提出一种联合的动态特征检测方法计算特征点的总动态概率,并将动态概率大于阈值的特征点进行剔除,在SLAM系统的前端实现了视觉信息与惯性运动信息的紧耦合。在数据集上的实验结果表明,该视觉惯性SLAM改进算法有良好的性能表现。