期刊文献+
共找到76篇文章
< 1 2 4 >
每页显示 20 50 100
融合变分图自编码器与局部-全局图网络的认知负荷脑电识别模型 被引量:1
1
作者 周天彤 郑妍琪 +2 位作者 魏韬 戴亚康 邹凌 《计算机应用》 北大核心 2025年第6期1849-1857,共9页
针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学... 针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学习模块这2个部分组成。首先,使用时间学习模块通过多尺度时间卷积捕捉EEG信号的动态频率表示,并通过空间与通道重建卷积(SCConv)和1×1卷积核级联模块融合多尺度卷积提取的特征;其次,使用图形学习模块将EEG数据定义为局部-全局图,其中,局部图特征提取层将节点属性聚合到一个低维向量,全局图特征提取层通过VGAE重构图结构;最后,对全局图和节点特征向量执行轻量化图卷积操作,由全连接层输出预测结果。通过嵌套交叉验证,实验结果表明,在心算任务(MAT)数据集上,相较于次优的局部-全局图网络(LGGNet),VLGGNet的平均准确率(mAcc)和平均F1分数(mF1)分别提升了4.07和3.86个百分点;在同时任务EEG工作量(STEW)数据集上,相较于表现最好的多尺度时空卷积神经网络(TSception),VLGGNet的mAcc与TSception相同,mF1仅降低了0.01个百分点。可见VLGGNet提高了认知负荷分类的性能,也验证了前额叶和额叶区域与认知负荷状态密切相关。 展开更多
关键词 认知负荷 脑电信号 多尺度时间卷积 变分图自编码器 局部-全局图网络
在线阅读 下载PDF
面向有向图的特征提取与表征学习研究
2
作者 谭郁松 张钰森 蹇松雷 《计算机工程与应用》 北大核心 2025年第3期234-241,共8页
图数据是一种用于描述不同实体之间关联关系的重要数据形式。有向图作为一种特殊形式,不仅能描述实体关联,还能明确关系的方向,提供了更精细和详实的描述。因此,有向图的特征提取和表征学习对于深入理解复杂系统具有至关重要的意义。然... 图数据是一种用于描述不同实体之间关联关系的重要数据形式。有向图作为一种特殊形式,不仅能描述实体关联,还能明确关系的方向,提供了更精细和详实的描述。因此,有向图的特征提取和表征学习对于深入理解复杂系统具有至关重要的意义。然而,现有方法在有效提取有向图的方向信息方面仍然存在挑战,主要依赖于节点的局部信息进行特征提取,难以充分利用有向边蕴含的方向信息。为解决这一问题,提出了一种名为变分有向图自编码器(variational directed graph autoencoder,VDGAE)的无监督表示学习方法。VDGAE通过关联矩阵来建模节点与边之间的关联关系,通过计算节点与边之间的亲和力,来重构输入有向图,从而实现无监督表征学习。基于此,VDGAE能够同时为输入有向图学习节点与边的表征,充分捕获有向图的结构信息和方向信息并嵌入至节点与边的表征向量中,使得有向图能够被更准确地表征。实验结果表明,相较于11个基准方法,VDGAE在5个数据集上节点分类任务均优于基准方法,提升了11.96%的预测精度,充分验证了其有效性。 展开更多
关键词 有向图 表征学习 关联矩阵 图神经网络 变分自编码器
在线阅读 下载PDF
基于SCADA参量耦合网络变分图自编码的风电机组异常检测方法
3
作者 刘小峰 李俊锋 柏林 《太阳能学报》 北大核心 2025年第5期567-576,共10页
利用风电机组数据采集与监控系统(SCADA)数据监测参量本身数值信息及其相互间的耦合关联性,提出基于多参量耦合关系变分图自编码的风电机组异常检测方法。该方法利用时间序列自适应符号传递熵构建SCADA数据的参量耦合关系网络,设计变分... 利用风电机组数据采集与监控系统(SCADA)数据监测参量本身数值信息及其相互间的耦合关联性,提出基于多参量耦合关系变分图自编码的风电机组异常检测方法。该方法利用时间序列自适应符号传递熵构建SCADA数据的参量耦合关系网络,设计变分图自编码再编码模型对参量耦合关系网络进行编码重构。结合SCADA参量耦合关系网络的编码重构误差构建风电机组的健康状态评估指标,采用支持向量回归的迭代更新法,对机组实时健康阈值进行自适应设置。两个风场的风力发电机组SCADA数据分析结果表明:该文方法充分利用了SCADA数据本身的数值信息及耦合关系结构信息,有效提高了风电机组异常状态检测的准确性及对环境工况的鲁棒性。 展开更多
关键词 风电机组 多参量耦合 变分图自编码 健康指数 异常检测
在线阅读 下载PDF
基于变分图自编码器的多变量时序数据异常检测
4
作者 尹文萃 谢平 +2 位作者 叶成绪 韩佳新 夏星 《计算机科学》 北大核心 2025年第S1期688-695,共8页
多变量时序数据异常检测指识别多变量时序数据中的异常值。为解决多变量时序数据间的复杂性和内部变量间特征依赖的问题,文中提出了一种基于变分图自编码器的多变量时序数据异常检测方法。首先,使用滑动窗口提取变量嵌入特征,并基于特... 多变量时序数据异常检测指识别多变量时序数据中的异常值。为解决多变量时序数据间的复杂性和内部变量间特征依赖的问题,文中提出了一种基于变分图自编码器的多变量时序数据异常检测方法。首先,使用滑动窗口提取变量嵌入特征,并基于特征相似性构建结构关联关系图,然后将该多变量时序数据间的关联关系通过变分图自编码器进行优化,提高多变量时序数据的结构特征表征能力;其次,通过多头注意力机制提升多变量时序数据不同通道间的特征表示,并和多变量时序数据结构信息进行融合;最后,采用极值理论选取阈值并进行无监督异常检测。实验结果表明,所提模型在SWaT,MSL等数据集上F1分数达到了81.43%和99.67%的结果。 展开更多
关键词 异常检测 多变量时序数据 图结构学习 变分图自编码器
在线阅读 下载PDF
深度图网络驱动的核电系统多级异常检测方法
5
作者 张乐 成玮 +5 位作者 张硕 陈雪峰 常丰田 洪郡滢 马颖菲 彭将 《振动.测试与诊断》 北大核心 2025年第1期88-94,202,共8页
针对深度学习方法未明确学习变量间关系结构、系统异常难以准确检测的问题,提出一种深度图网络驱动的核电系统多级异常检测方法。首先,利用无监督图对比学习方法挖掘系统变量时间序列间相关性,构建与核电系统物理结构匹配的可解释性图结... 针对深度学习方法未明确学习变量间关系结构、系统异常难以准确检测的问题,提出一种深度图网络驱动的核电系统多级异常检测方法。首先,利用无监督图对比学习方法挖掘系统变量时间序列间相关性,构建与核电系统物理结构匹配的可解释性图结构;其次,基于变分图自编码器重构系统图结构,以重构误差来表征系统运行状态,从系统层面防止非线性突发行为带来的安全性问题;然后,通过半监督图卷积节点分类模型识别系统内部各变量运行状态,实现测点级异常检测;最后,以PCTranACP100仿真机2种基准事故工况数据、国内某核电机组循环水系统监测数据来验证提出方法的有效性。结果表明,系统级异常检测准确率达到93%,86%和90%,证明所提出方法能够准确检测出系统异常情况,可降低电厂单一仪表异常触发的非计划停机概率。 展开更多
关键词 核电系统 无监督深度图学习 可解释性图结构 多级异常检测 变分图自编码器
在线阅读 下载PDF
基于图潜向量分布学习的图过采样方法
6
作者 任博 董明刚 +1 位作者 于扬 卢贤睿 《计算机科学与探索》 北大核心 2025年第7期1808-1819,共12页
现实世界中许多图数据存在类别分布不平衡的问题,其通常表现在节点、边和图三个级别。常用的基于过采样的图级不平衡处理方法,因样本缺乏多样性,会导致模型过拟合。针对该问题,提出一种图潜向量分布学习的图过采样方法(GLRD-GAN)。提出... 现实世界中许多图数据存在类别分布不平衡的问题,其通常表现在节点、边和图三个级别。常用的基于过采样的图级不平衡处理方法,因样本缺乏多样性,会导致模型过拟合。针对该问题,提出一种图潜向量分布学习的图过采样方法(GLRD-GAN)。提出一种图潜向量分布学习方法,利用预训练的图变分自编码器(VGAE)和全连接神经网络学习少数类图样本在低维空间内的潜向量分布,在该分布上随机采样潜向量信息并与原少数类潜向量融合,保证了少数类潜向量的多样性。设计了一种基于双解码器的图样本生成器,经预训练的内积解码器和图卷积解码器充分利用采样的潜向量来分别生成图数据的拓扑结构和节点特征。通过GAN判别器检测生成样本的真伪和类别,监督生成样本的有效性,实现多样性的少数类图样本生成。在5个具有代表性的长尾图数据集上进行了对比实验和可视化观察,结果表明提出的基于图潜向量分布学习的图过采样方法在Acc和F1值上较其他方法平均高出1%~4%,且能够生成有效的少数类图样本。 展开更多
关键词 长尾问题 图变分自编码器 图潜向量 生成对抗网络
在线阅读 下载PDF
基于潮流嵌入和最小割池化的电网静态安全分析图学习模型
7
作者 马遵 李永哲 +4 位作者 何鑫 管霖 向川 陈勇 何伊慧 《南方电网技术》 北大核心 2025年第1期63-73,92,共12页
运用数据驱动模型实现快速的电网静态安全分析是新型电力系统分析中值得探索的研究方向。提高数据驱动模型对运行方式变化的泛化能力和对电网拓扑变化的适应能力是关键技术挑战之一。提出了一种基于潮流嵌入和最小割池化的电网静态安全... 运用数据驱动模型实现快速的电网静态安全分析是新型电力系统分析中值得探索的研究方向。提高数据驱动模型对运行方式变化的泛化能力和对电网拓扑变化的适应能力是关键技术挑战之一。提出了一种基于潮流嵌入和最小割池化的电网静态安全分析图学习模型。首先,通过以复原节点电压为导向的潮流状态嵌入模块,将电网N-1方式的拓扑差异转化为节点特征差异,改善了模型的泛化能力。其次,运用社团划分思想,采用最小割池化技术动态缩小了电网节点规模和节点特征维数,使模型具备对拓扑变化的适应能力。通过在IEEE 39节点系统和IEEE 118节点系统的验证测试和可视化分析,表明所设计的图深度学习模型准确率高,具有秒级的评估速度以及对电网规模变化的良好适应能力。 展开更多
关键词 静态安全分析 图深度学习 掩模图自编码器 潮流嵌入 图池化 拓扑变化适应性
在线阅读 下载PDF
基于变分推理与图神经网络的机器水军检测
8
作者 王宇哲 吴安昊 +1 位作者 闫钦与 颜靖华 《科学技术与工程》 北大核心 2025年第10期4183-4191,共9页
随着互联网和社交平台的飞速发展,机器水军检测问题已成为构建和谐互联网环境的一大技术挑战。然而,从社交平台收集的用户数据存在信息缺失、数据噪声等问题。因此,针对图学习检测机器水军模型中,使用点估计作为权重的方法在数据单一或... 随着互联网和社交平台的飞速发展,机器水军检测问题已成为构建和谐互联网环境的一大技术挑战。然而,从社交平台收集的用户数据存在信息缺失、数据噪声等问题。因此,针对图学习检测机器水军模型中,使用点估计作为权重的方法在数据单一或缺失数据的区域无法表达不确定性的问题。提出了一种融合变分推理的图神经网络机器水军检测模型VRGAT,它引入了权值的概率分布,导出了真实后验的变分近似,通过为均值和方差分别使用不同的卷积运算,更准确地捕捉数据的变异性。基于Twibot-20数据集开展了仿真验证,相较于已有的最佳机器水军检测基准(F_1=88.12),VRGAT模型实现了性能提升,达到F_1=89.64。在鲁棒性实验中加入不同比例的随机噪声,VRGAT模型的准确率下降相比其他基线模型明显减缓,表明其抗噪声能力优于已有基线方法。实验结果表明,引入变分推理能够提高机器水军检测效果及模型抗噪声能力。 展开更多
关键词 机器水军检测 变分推理 图神经网络 社交网络
在线阅读 下载PDF
时空特征变分学习的交通流预测模型
9
作者 欧阳毅 汤文燕 +1 位作者 邵泳博 黎晏伶 《控制理论与应用》 北大核心 2025年第1期158-166,共9页
交通流量时空预测是智能交通系统的关键任务.针对城市交通流序列的非线性和多模态特性,本文提出了一种基于时空特征融合的变分学习模型(ST-FVAE),采用局部时空特征融合和全局特征融合两个阶段对具有图空间拓扑特性的交通流数据进行预测... 交通流量时空预测是智能交通系统的关键任务.针对城市交通流序列的非线性和多模态特性,本文提出了一种基于时空特征融合的变分学习模型(ST-FVAE),采用局部时空特征融合和全局特征融合两个阶段对具有图空间拓扑特性的交通流数据进行预测.局部特征融合模块由时间卷积残差单元和图卷积神经网络(GCN)构成,提取交通节点的局部时间特征信息,并利用GCN将空间拓扑信息嵌入局部时间特征信息中.通过基于局部时空图特征融合的变分自编码器交通流预测模型,学习全局时空相关性特征.在全局时空特征融合变分自编码器的学习过程中,为使Q分布能够逼近实际数据P分布,通过最大化似然函数的变分推断证据下界(ELBO)使得两个分布之间的KL散度最小化,提出了计算分布期望的KL差异构造训练损失函数的方法,进一步提高预测准确率.通过对交通流数据集和交通速度数据集的预测实验结果表明:本文提出的方法在交通流量和速度的预测方面都具有较好的预测特性,对于30 min和60 min的预测鲁棒性更好. 展开更多
关键词 交通流预测 时空融合 变分自编码器 图卷积
在线阅读 下载PDF
融合GCN与Informer的序列推荐算法
10
作者 范利利 李然 +2 位作者 王宁 王客程 吴江 《现代电子技术》 北大核心 2025年第8期39-44,共6页
为了解决长序列推荐算法的准确率低和冷启动问题,提高推荐算法的性能,提出一种融合GCN与Informer的序列推荐算法VGIN。使用图卷积网络提取数据中节点之间的空间特征,引入Informer模型来处理数据潜在的时间依赖性,再将两种特征输入多层... 为了解决长序列推荐算法的准确率低和冷启动问题,提高推荐算法的性能,提出一种融合GCN与Informer的序列推荐算法VGIN。使用图卷积网络提取数据中节点之间的空间特征,引入Informer模型来处理数据潜在的时间依赖性,再将两种特征输入多层感知器得出预测评分,实现长序列预测,改善长序列推荐效果较差的问题;同时利用变分自编码器(VAE)填补用户的数据缺失,改善用户冷启动问题。实验结果表明:构建的VGIN模型与基线模型相比得到了最高的HR@20值(0.248 4)和NDCG@20值(0.113 7),与基线版本中最优的SASRec模型相比,NDCG@20值和HR@20值分别提高了约7.87%、8.24%。该模型能有效提高长序列推荐准确率,同时降低了用户冷启动对推荐准确率的影响。 展开更多
关键词 序列推荐算法 冷启动 图卷积网络 Informer模型 变分自编码器 特征提取
在线阅读 下载PDF
时空邻域感知的时序兴趣点推荐 被引量:2
11
作者 温雯 邓峰颖 +2 位作者 郝志峰 蔡瑞初 梁方宇 《计算机科学与探索》 CSCD 北大核心 2024年第7期1865-1878,共14页
如何捕捉用户行为的动态变化和依赖关系是当前兴趣点推荐的一个重要问题,主要面临着数据稀疏、时空序列特征提取难以及用户个性化差异不易捕捉等挑战。为了解决这些挑战,提出了一种基于时空邻域感知及隐含状态变化的时序兴趣点推荐方法... 如何捕捉用户行为的动态变化和依赖关系是当前兴趣点推荐的一个重要问题,主要面临着数据稀疏、时空序列特征提取难以及用户个性化差异不易捕捉等挑战。为了解决这些挑战,提出了一种基于时空邻域感知及隐含状态变化的时序兴趣点推荐方法。该方法将用户行为的学习转换成了潜在状态的学习,并以一种结合距离信息的方式引入空间信息,有效地捕捉了用户的移动特征。首先,利用变分自编码器表征用户的潜在状态,再通过图神经网络学习到潜在状态之间的依赖关系,从而捕捉到用户行为的时序依赖;然后,利用注意力机制和径向基函数来捕捉用户与地点候选集之间的空间依赖,进而评估用户访问每个地点的概率,实现兴趣点推荐。在三个真实数据集上进行了实验比较和分析,显示了该方法相比于现有的基准算法具有更好的时序推荐性能。 展开更多
关键词 兴趣点推荐 变分自编码器 图神经网络 注意力机制
在线阅读 下载PDF
基于自适应时序解耦和气象因素动态影响评估的超短期太阳辐照度预测 被引量:1
12
作者 臧海祥 黄海洋 +3 位作者 程礼临 张越 孙国强 卫志农 《太阳能学报》 EI CAS CSCD 北大核心 2024年第11期411-417,共7页
针对太阳辐射序列具有波动性以及受气象因素影响而导致太阳辐照度预测精度降低的问题,提出一种基于滑动窗口变分模态分解(SWVMD)、自适应图卷积网络(AGCN)和四核时间卷积神经网络(QTCN)的超短期太阳辐照度预测模型。首先利用SWVMD对历... 针对太阳辐射序列具有波动性以及受气象因素影响而导致太阳辐照度预测精度降低的问题,提出一种基于滑动窗口变分模态分解(SWVMD)、自适应图卷积网络(AGCN)和四核时间卷积神经网络(QTCN)的超短期太阳辐照度预测模型。首先利用SWVMD对历史辐射序列进行解耦,实时挖掘不同特征尺度的模态分量,然后将数据集重构为图数据,进而利用AGCN动态评估气象因素的影响程度,最后采用QTCN提取融合后特征序列的多尺度时序特征,实现对未来30 min太阳辐照度的预测。实验结果表明,与LSTM、TCN模型和CNN-Bi-LSTM模型相比,所提出的预测模型能有效提升预测精度。 展开更多
关键词 太阳辐照度 深度学习 变分模态分解 图卷积神经网络 时间卷积神经网络
在线阅读 下载PDF
基于变分贝叶斯的鲁棒自适应因子图优化组合导航算法 被引量:3
13
作者 陈熙源 周云川 +1 位作者 钟雨露 戈明明 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第1期120-129,共10页
复杂环境下的量测粗差和时变噪声严重影响了状态估计的精度和可靠性,对此提出了一种基于变分贝叶斯的鲁棒自适应因子图优化组合导航算法。首先,基于先验和后验两阶段更新将变分贝叶斯推断引入因子图优化框架中,以估计时变量测噪声协方差... 复杂环境下的量测粗差和时变噪声严重影响了状态估计的精度和可靠性,对此提出了一种基于变分贝叶斯的鲁棒自适应因子图优化组合导航算法。首先,基于先验和后验两阶段更新将变分贝叶斯推断引入因子图优化框架中,以估计时变量测噪声协方差;其次,利用相邻帧间的平均新息构造量测协方差预测值,作为粗差判据来实现稳健估计。基于INS/GNSS组合导航的仿真和现场实验评估表明,所提方法能在粗差干扰的情况下有效估计时变量测噪声,相比M估计和滑动窗口自适应因子图优化算法的水平定位误差分别减小了26.7%和39.8%,兼顾了估计精度和抗差性能,具有较好的复杂环境适应性。 展开更多
关键词 因子图优化 变分贝叶斯 组合导航 鲁棒自适应估计
在线阅读 下载PDF
融合多个性化桥和自监督学习的跨域推荐算法 被引量:2
14
作者 王永贵 刘丹妮 《计算机科学与探索》 CSCD 北大核心 2024年第7期1792-1805,共14页
针对跨域推荐系统中目标域中项目交互较少的用户,提出一种融合多个性化桥和自监督学习的跨域推荐算法(MS-PTUPCDR)。首先,在目标域加入变分二部图编码器,使用变分推理框架生成潜在变量,目标域用户表示聚合其同构邻居信息。其次,将用户... 针对跨域推荐系统中目标域中项目交互较少的用户,提出一种融合多个性化桥和自监督学习的跨域推荐算法(MS-PTUPCDR)。首先,在目标域加入变分二部图编码器,使用变分推理框架生成潜在变量,目标域用户表示聚合其同构邻居信息。其次,将用户单一偏好桥扩展为用户多个性化偏好桥,将用户在多源域可转移的用户因子转移到目标域,在目标域加入多头注意力机制融合分别来自不同源域转换的用户潜在因子作为自监督学习的辅助任务。最后,在目标域中将聚合用户邻居因子和融合后的用户多源域转移用户因子进行自监督学习。在目标域通过用户自监督学习后的用户因子和目标域项目因子点积进行目标域项目评分预测。算法在Amazon和MovieLens两个数据集上进行实验,结果表明算法在MAE和RMSE两个评价指标上优于对比基线算法,在两个数据集上与最优对比基线算法相比,MAE平均提升1.96%,RMSE平均提升1.92%,验证了算法的有效性。 展开更多
关键词 跨域推荐 用户多个性化偏好桥 多头注意力机制 自监督学习 变分二部图编码器
在线阅读 下载PDF
基于异常感知的变分图自编码器的图级异常检测算法
15
作者 林馥 李明康 +3 位作者 罗学雄 张书豪 张越 王梓桐 《计算机研究与发展》 EI CSCD 北大核心 2024年第8期1968-1981,共14页
图异常检测在识别复杂数据结构的异常模式中具有重要作用,被广泛地应用于有害分子识别、金融欺诈检测、社交网络分析等领域.但目前的图异常检测研究大多数聚焦在节点级别的异常检测,针对图级别的异常检测方法仍然较少,且这些方法并不能... 图异常检测在识别复杂数据结构的异常模式中具有重要作用,被广泛地应用于有害分子识别、金融欺诈检测、社交网络分析等领域.但目前的图异常检测研究大多数聚焦在节点级别的异常检测,针对图级别的异常检测方法仍然较少,且这些方法并不能对异常图数据进行充分挖掘,且对异常标签比较敏感,无法有效地捕捉异常样本的特征,存在模型泛化能力差、性能翻转问题,异常检测能力有待提升.提出了一种基于异常感知的变分图自编码器的图级异常检测算法(anomaly-aware variational graph autoencoder based graph-level anomaly detection algorithm,VGAE-D),利用具有异常感知能力的变分图自编码器提取正常图和异常图数据的特征,并差异化正常图和异常图在编码空间中的编码信息分布,对图编码信息进一步挖掘来计算图的异常得分.在不同领域的8个公开数据集上进行实验,实验结果表明,提出的图级别异常检测方法能有效地对不同数据集中的异常图进行识别,异常检测性能高于目前主流的图级别异常方法,且具有少异常样本学习能力,较大程度上克服了性能翻转问题. 展开更多
关键词 图级别异常检测 图神经网络 变分图自编码器 图表示学习 少样本学习
在线阅读 下载PDF
张量分解和自适应图全变分的高光谱图像去噪 被引量:4
16
作者 蔡明娇 蒋俊正 +1 位作者 蔡万源 周芳 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第2期157-169,共13页
高光谱图像在采集过程中受到观测条件、成像仪材料属性、传输条件等客观因素的影响,不可避免地会引入各种噪声。这严重降低了高光谱图像的质量以及限制了后续处理的精度。因此,高光谱图像去噪是一个极其重要的预处理步骤。针对高光谱图... 高光谱图像在采集过程中受到观测条件、成像仪材料属性、传输条件等客观因素的影响,不可避免地会引入各种噪声。这严重降低了高光谱图像的质量以及限制了后续处理的精度。因此,高光谱图像去噪是一个极其重要的预处理步骤。针对高光谱图像去噪问题,提出了低秩张量分解和自适应图全变分的高光谱图像去噪算法。首先,利用低秩张量分解来描述高光谱图像的全局空间和光谱相关性,并使用自适应权重图全变分来刻画高光谱图像空间维度上的分段平滑特性和保留高光谱图像的边缘信息;此外,采用l1-范数、Frobenius-范数分别刻画包括条纹噪声、脉冲噪声、死线噪声在内的稀疏噪声和高斯噪声。由此高光谱图像去噪问题归结为一个包含低秩张量分解和自适应图全变分的约束优化问题。利用增广拉格朗日乘子法对该优化问题进行交替求解。实验结果表明,所提出的高光谱图像去噪算法与现有的算法相比,能够充分刻画高光谱图像数据的内在结构特性,具有更好的去噪性能。 展开更多
关键词 高光谱图像去噪 Tucker分解 自适应图全变分
在线阅读 下载PDF
基于局部数据增强动态图的事件预测 被引量:1
17
作者 潘磊 刘欣 +3 位作者 陈君益 程章桃 刘乐源 周帆 《计算机科学》 CSCD 北大核心 2024年第3期118-127,共10页
事件指在真实世界中特定的时间和地点发生的与特定主题相关的活动,例如,社会动乱、暴恐袭击、自然灾害和传染病流行等事件会对国家安全和人民群众的生活产生重大威胁。如果能对此类事件的发生进行有效预测,将最大程度地减少负面事件带... 事件指在真实世界中特定的时间和地点发生的与特定主题相关的活动,例如,社会动乱、暴恐袭击、自然灾害和传染病流行等事件会对国家安全和人民群众的生活产生重大威胁。如果能对此类事件的发生进行有效预测,将最大程度地减少负面事件带来的影响或最大化正面事件带来的利益。关于事件的研究中,准确预测事件仍然是一个非常具有挑战性的任务。文中提出了一种基于图注意力网络的事件预测方法LAT-GAT(Local Augmented Temporal-GAT),该方法使用条件变分编码器,在所构建的事件图中对目标节点的邻居节点生成新的特征样本,与节点原有特征进行拼合,形成新的节点特征,实现了对事件的传播结构的利用;另外,LAT-GAT还考虑了历史事件发生的时间先后顺序,将网络在上一时间点的输出结果集成到当前时间的特征中,从而实现了对事件传播时间特性的利用。最后,在泰国、印度、埃及和俄罗斯这4个国家真实事件数据集上,与多种代表性基线方法进行了对比实验。实验结果表明,LAT-GAT在4个国家数据上的F1评分都优于基线方法;在泰国、俄罗斯和印度数据集上召回率优于基线方法;在泰国、埃及和印度数据集上也获得了最高的准确率。还通过消融实验考察了模型参数对最终结果的影响。 展开更多
关键词 事件预测 图注意力网络 动态图 条件变分编码器 数据增强
在线阅读 下载PDF
水稻泛基因组学的发展与前景:重要工具与应用 被引量:2
18
作者 贺文闯 许强 +1 位作者 钱前 商连光 《生物技术通报》 CAS CSCD 北大核心 2024年第10期9-18,共10页
与单个基因组不同,泛基因组一般是指包含一个物种或群体中全部基因组信息的数据集。近十年来,泛基因组学在水稻中已逐步成为研究热点,相关泛基因组成果和工具已在群体遗传学、进化生物学和生物育种实践等多个下游研究领域中获得广泛应... 与单个基因组不同,泛基因组一般是指包含一个物种或群体中全部基因组信息的数据集。近十年来,泛基因组学在水稻中已逐步成为研究热点,相关泛基因组成果和工具已在群体遗传学、进化生物学和生物育种实践等多个下游研究领域中获得广泛应用。本文聚焦于水稻泛基因组学的发展历程与应用前景,回顾了水稻泛基因组学的内涵发展和研究成果的时间线,总结了现有的水稻泛基因组代表性重要成果工具及其在多个领域中的主要应用,展望了其面临的挑战和发展前景。 展开更多
关键词 水稻泛基因组 图形泛基因组 数据库 结构变异 生物育种
在线阅读 下载PDF
基于数据驱动的电力系统虚假数据注入攻击防御框架的研究 被引量:2
19
作者 陈柏任 夏候凯顺 李梦诗 《电测与仪表》 北大核心 2024年第12期10-16,共7页
电力系统状态估计(power system state estimation,PSSE)在现代智能电网的稳定运行中起着至关重要的作用,但它也容易遭受网络攻击。虚假数据注入攻击(false data injection attacks,FDIA)是最常见的网络攻击方式之一,它可以篡改量测数... 电力系统状态估计(power system state estimation,PSSE)在现代智能电网的稳定运行中起着至关重要的作用,但它也容易遭受网络攻击。虚假数据注入攻击(false data injection attacks,FDIA)是最常见的网络攻击方式之一,它可以篡改量测数据并绕过不良数据检测(bad data detection,BDD)机制,从而导致不正确的状态估计结果。文中提出一种基于数据驱动的针对PSSE的FDIA防御框架,该框架包含异常检测子框架和数据恢复子框架。异常检测部分采用改进的图卷积网络(improved graph convolutional network,IGCN)模型,该模型采用动态的边缘条件滤波器作用于图结构中,有效利用电力系统的拓扑信息、节点特征和边特征,从而检测出异常值。数据恢复部分采用变分自编码器(variational auto-encoder,VAE)模型,该模型将深度学习思想与贝叶斯推理相结合,可以有效地将异常数据恢复到在正常运行情况下的数值。针对不同攻击强度和攻击程度下的IEEE 14系统进行案例研究,以评估防御框架的检测与恢复性能。仿真结果表明,基于IGCN的异常检测子框架性能优于常规的数据驱动模型框架,其总体精确率为99.348%,召回率为99.331%,F1值为99.324%,基于VAE的数据恢复子框架的总体平均绝对误差为0.00534 p.u.,证明了防御框架优异的检测与恢复性能。 展开更多
关键词 电力系统状态估计 虚假数据注入攻击 数据驱动 改进图卷积网络 变分自编码器
在线阅读 下载PDF
融合IVMD的海表温度时空智能预测方法 被引量:1
20
作者 韩莹 曹允重 +2 位作者 张凌珺 赵芮晗 董昌明 《海洋测绘》 CSCD 北大核心 2024年第3期53-57,61,共6页
精准的海洋表面温度(sea surface temperature, SST)预测在海洋和气象领域具有重要意义,如海洋渔业捕捞和海洋天气预报等。提出一种融合改进变分模态分解(improved variational mode decomposition, IVMD)的时空混合模型来预测SST,采用... 精准的海洋表面温度(sea surface temperature, SST)预测在海洋和气象领域具有重要意义,如海洋渔业捕捞和海洋天气预报等。提出一种融合改进变分模态分解(improved variational mode decomposition, IVMD)的时空混合模型来预测SST,采用中心频率观察法、残差指数最小化和皮尔逊相关系数改进变分模态分解(variational mode decomposition, VMD),去除SST序列冗余,利用图卷积神经网络(graph convolutional network, GCN)提取SST交互特征并结合长短时记忆网络(long short-term memory, LSTM)捕捉时间动态,提高预测精度。选取中国东海海域进行实证分析,实验结果表明:与现有模型对比,本文模型在均方根误差、平均绝对误差和平均绝对百分比误差3个指标上均有显著提升,验证了本文模型的有效性和稳定性。 展开更多
关键词 海洋表面温度预测 改进变分模态分解 皮尔逊相关系数 图卷积神经网络 长短时记忆网络
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部