The dragline is one of the most promising surface mining machines in China. This paper studies the interac-tion between the working bench advancing speed and the stripping volume with variation in coal seam thickness....The dragline is one of the most promising surface mining machines in China. This paper studies the interac-tion between the working bench advancing speed and the stripping volume with variation in coal seam thickness. Ad-justing the bulldozing volume (depth) and/or changing the dragline bench height are proposed as means to ensure a smooth and economical mining operation. When the coal seam is getting thicker it is recommended to reduce the bull-dozing volume (depth) for a higher dragline efficiency. When the coal seam is getting thinner it is recommended to in-crease the bulldozing volume (depth) to ensure the dragline can work at the proper bench height.展开更多
The characteristics of coal seam development,and the prospects of a favorable coal-forming area,were evaluated for the Liaohe Basin located in China.The Number 3 and Number 9 coal seam thickness series from 60 nearly ...The characteristics of coal seam development,and the prospects of a favorable coal-forming area,were evaluated for the Liaohe Basin located in China.The Number 3 and Number 9 coal seam thickness series from 60 nearly equally spaced bores in the Eastern depression of the Liaohe Basin were examined by a rescaled range analysis.The results indicate that the Hurst exponents of the Number 3 and Number 9 coal seam thickness series are 0.69 and 0.68,respectively.This suggests the presence of persistence.As the bore spacing increases the Hurst exponent of the Number 3 series gradually decreases(H changes from 0.69 to 0.52) and shifts from persistence to randomness.The Hurst exponent of the Number 9 thickness data gradually increases(H changes from 0.68 to 0.91) and always shows the characteristic of persistence.A combination of geological characteristics and the series data allow the conclusion that it is more suitable for the Number 9 coal seam to form in the Northeastern part of the Eastern depression than the Number 3 coal seam.展开更多
Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution l...Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution laws when mining 4#coal seam.Besides,this study researched on the influence of face advancing length,speed and mining height on the height of the water flowing fractured zones(HWFFZ),and analyzed the correlation of face advancing length and change rules of aquifer water levels and goaf water inflow.Based on those mentioned above,this research proposed the following water-controlling technologies:draining the roof water before mining,draining goaf water,reasonable advancing speed and mining thickness.These water-controlling technologies were successfully used in the feld,thus ensured safely mining the very thick coal seam under water-rich roof.展开更多
The paper aims to identify a reasonable method for mining ultra-thick coal seams in an end-slope in surface mine, With a case study of Heidaigou surface coal mine(HSCM), the paper conducted a comparative research on t...The paper aims to identify a reasonable method for mining ultra-thick coal seams in an end-slope in surface mine, With a case study of Heidaigou surface coal mine(HSCM), the paper conducted a comparative research on three mining methods, namely Underground Mining Method(UMM), Highwall Mining System(HMS) and Local Steep Slope Mining Method(LSSMM). A model was firstly established to simulate the impact that UMM and HMS exert on monitoring points and surface deformation. The way that stripping and excavation amount varies with different slope angle, and the corresponding end slope stability were analyzed in the mode of LSSMM. Then a TOPSIS model was established by taking into account six indicators such as recovery ratio, technical complexity and adaptability, the impact on surface mining production, production safety and economic benefits. Finally, LSSMM was determined as the best mining method for mining ultra-thick coal seams in end slope in HSCM.展开更多
The fully-mechanized caving coal technique (FMCCT) is a great technique progress of mining method in thick coal seams in China, and it has succeeded in some suitable condition mines. This paper introduces some technic...The fully-mechanized caving coal technique (FMCCT) is a great technique progress of mining method in thick coal seams in China, and it has succeeded in some suitable condition mines. This paper introduces some technical measures and achieved outcomes in gas and fire precaution and support selection for the use of the fully-mechanized caving coal technique in the complex-condition coal seams based on the practice of Weijiadi Coal Mine, in which the technique is used in the gently inclined extremelythick soft coal seam with the dangers of coal and gas outburst and spontaneous combustion.展开更多
It is important to study the mining technology under structures for raising the coal resources recovery ratio. Based on the geological and mining conditions, the top coal caving harmonic mining technique in thick coal...It is important to study the mining technology under structures for raising the coal resources recovery ratio. Based on the geological and mining conditions, the top coal caving harmonic mining technique in thick coal seam beneath the earth dam was put forward and studied. The 5 factors such as the panel mining direction, panel size, panel location, panel mining sequence and panel advance velocity were taken into account in this technique. The dam movement and deformation were predicted after the thick coal seam mining and the effects of mining on the dam were studied. By setting up the surveying stations on the dam, the movement and deformation of the dam were observed during mining. By taking some protective measures on the dam, the top coal caving mining technique in thick coal seam beneath the earth dam was carried out successfully. The study demonstrates that harmonic mining in thick coal seam is feasible under the dam. The safety of the earth dam after mining was ensured and the coal resources recovery ratio was improved.展开更多
The application of light hydraulic support highlights the advantages of longwall top-coal caving (LTC) in thinner thick-seams (3. 0~ 5. 0 m). Considering the problems in practice, the developing of its new series will...The application of light hydraulic support highlights the advantages of longwall top-coal caving (LTC) in thinner thick-seams (3. 0~ 5. 0 m). Considering the problems in practice, the developing of its new series will promote the mining of LTC with light hydraulic supports. Some relevant technical problems of the caving technology and the future of this series of supports are analyzed in this paper with several new opinions.展开更多
In this paper, the optimization design of the low strength mechanical test and orthogonal test have been analyzed in order to simulate the mechanical properties of thick and extra-thick coal seam accurately in a simil...In this paper, the optimization design of the low strength mechanical test and orthogonal test have been analyzed in order to simulate the mechanical properties of thick and extra-thick coal seam accurately in a similar material simulation test. The results show that the specimen can reach a wider range of strength when cement has been used compared to that of gypsum, suggesting that cement is more suitable for making coal seam in similar material simulation tests. The uniaxial compressive strength is more sensitive to cement than coal or sand. The proportion of coal and sand do not play a decisive role in uniaxial compressive strength. The uniaxial compressive strength and specimen density decrease as the mass percent of coal and aggregate–binder ratio rise. There is a positive correlation between uniaxial compressive strength and density. The No. 5 proportion(cement: sand: water: activated carbon: coal = 6:6:7:1.1:79.9)was chosen to be used in the similar material simulation test of steeply dipping and extra-thick coal seam with a density of 0.913 g/cm^3 and an uniaxial compressive strength of 0.076 MPa which are in accordance with the similarity theory. The phenomenon of overburden stratum movement, fracture development and floor pressure relief were obtained during the similar material simulation test by using the proportion.展开更多
基金Projects 50474069 supported by the National Natural Science Foundation of China2006BAB16B00 by the State Scientific and Technological Project of the 11th Five-Year Plan
文摘The dragline is one of the most promising surface mining machines in China. This paper studies the interac-tion between the working bench advancing speed and the stripping volume with variation in coal seam thickness. Ad-justing the bulldozing volume (depth) and/or changing the dragline bench height are proposed as means to ensure a smooth and economical mining operation. When the coal seam is getting thicker it is recommended to reduce the bull-dozing volume (depth) for a higher dragline efficiency. When the coal seam is getting thinner it is recommended to in-crease the bulldozing volume (depth) to ensure the dragline can work at the proper bench height.
基金supported by National Basic Research Program of China(No.2007CB209503)
文摘The characteristics of coal seam development,and the prospects of a favorable coal-forming area,were evaluated for the Liaohe Basin located in China.The Number 3 and Number 9 coal seam thickness series from 60 nearly equally spaced bores in the Eastern depression of the Liaohe Basin were examined by a rescaled range analysis.The results indicate that the Hurst exponents of the Number 3 and Number 9 coal seam thickness series are 0.69 and 0.68,respectively.This suggests the presence of persistence.As the bore spacing increases the Hurst exponent of the Number 3 series gradually decreases(H changes from 0.69 to 0.52) and shifts from persistence to randomness.The Hurst exponent of the Number 9 thickness data gradually increases(H changes from 0.68 to 0.91) and always shows the characteristic of persistence.A combination of geological characteristics and the series data allow the conclusion that it is more suitable for the Number 9 coal seam to form in the Northeastern part of the Eastern depression than the Number 3 coal seam.
基金provided by the Priority Academic Program Development of Jiangsu Higher Education Institutions of China(No.SZBF2011-6-B35)the Fundamental Research Funds for the Central Universities of China(No.2012LWB42)
文摘Considering the danger of water inrush in mining very thick coal seam under water-rich roof in Majialiang Coal Mine,the universal discrete element(UDEC)software was used to simulate the overburden fracture evolution laws when mining 4#coal seam.Besides,this study researched on the influence of face advancing length,speed and mining height on the height of the water flowing fractured zones(HWFFZ),and analyzed the correlation of face advancing length and change rules of aquifer water levels and goaf water inflow.Based on those mentioned above,this research proposed the following water-controlling technologies:draining the roof water before mining,draining goaf water,reasonable advancing speed and mining thickness.These water-controlling technologies were successfully used in the feld,thus ensured safely mining the very thick coal seam under water-rich roof.
基金provided by the National Natural Science Foundation of China(No.90510002)the Science and Technology Research of the Ministry of Education of China(No.306008)
文摘The paper aims to identify a reasonable method for mining ultra-thick coal seams in an end-slope in surface mine, With a case study of Heidaigou surface coal mine(HSCM), the paper conducted a comparative research on three mining methods, namely Underground Mining Method(UMM), Highwall Mining System(HMS) and Local Steep Slope Mining Method(LSSMM). A model was firstly established to simulate the impact that UMM and HMS exert on monitoring points and surface deformation. The way that stripping and excavation amount varies with different slope angle, and the corresponding end slope stability were analyzed in the mode of LSSMM. Then a TOPSIS model was established by taking into account six indicators such as recovery ratio, technical complexity and adaptability, the impact on surface mining production, production safety and economic benefits. Finally, LSSMM was determined as the best mining method for mining ultra-thick coal seams in end slope in HSCM.
文摘The fully-mechanized caving coal technique (FMCCT) is a great technique progress of mining method in thick coal seams in China, and it has succeeded in some suitable condition mines. This paper introduces some technical measures and achieved outcomes in gas and fire precaution and support selection for the use of the fully-mechanized caving coal technique in the complex-condition coal seams based on the practice of Weijiadi Coal Mine, in which the technique is used in the gently inclined extremelythick soft coal seam with the dangers of coal and gas outburst and spontaneous combustion.
基金sponsored by the National Natural Science Foundation of China(No.51374092)
文摘It is important to study the mining technology under structures for raising the coal resources recovery ratio. Based on the geological and mining conditions, the top coal caving harmonic mining technique in thick coal seam beneath the earth dam was put forward and studied. The 5 factors such as the panel mining direction, panel size, panel location, panel mining sequence and panel advance velocity were taken into account in this technique. The dam movement and deformation were predicted after the thick coal seam mining and the effects of mining on the dam were studied. By setting up the surveying stations on the dam, the movement and deformation of the dam were observed during mining. By taking some protective measures on the dam, the top coal caving mining technique in thick coal seam beneath the earth dam was carried out successfully. The study demonstrates that harmonic mining in thick coal seam is feasible under the dam. The safety of the earth dam after mining was ensured and the coal resources recovery ratio was improved.
文摘The application of light hydraulic support highlights the advantages of longwall top-coal caving (LTC) in thinner thick-seams (3. 0~ 5. 0 m). Considering the problems in practice, the developing of its new series will promote the mining of LTC with light hydraulic supports. Some relevant technical problems of the caving technology and the future of this series of supports are analyzed in this paper with several new opinions.
基金support of National Natural Science Foundation Project of China (51304128 & 51304237) the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents of China (2013RCJJ049)
文摘In this paper, the optimization design of the low strength mechanical test and orthogonal test have been analyzed in order to simulate the mechanical properties of thick and extra-thick coal seam accurately in a similar material simulation test. The results show that the specimen can reach a wider range of strength when cement has been used compared to that of gypsum, suggesting that cement is more suitable for making coal seam in similar material simulation tests. The uniaxial compressive strength is more sensitive to cement than coal or sand. The proportion of coal and sand do not play a decisive role in uniaxial compressive strength. The uniaxial compressive strength and specimen density decrease as the mass percent of coal and aggregate–binder ratio rise. There is a positive correlation between uniaxial compressive strength and density. The No. 5 proportion(cement: sand: water: activated carbon: coal = 6:6:7:1.1:79.9)was chosen to be used in the similar material simulation test of steeply dipping and extra-thick coal seam with a density of 0.913 g/cm^3 and an uniaxial compressive strength of 0.076 MPa which are in accordance with the similarity theory. The phenomenon of overburden stratum movement, fracture development and floor pressure relief were obtained during the similar material simulation test by using the proportion.