The multipath effect and movements of people in indoor environments lead to inaccurate localization. Through the test, calculation and analysis on the received signal strength indication (RSSI) and the variance of R...The multipath effect and movements of people in indoor environments lead to inaccurate localization. Through the test, calculation and analysis on the received signal strength indication (RSSI) and the variance of RSSI, we propose a novel variance-based fingerprint distance adjustment algorithm (VFDA). Based on the rule that variance decreases with the increase of RSSI mean, VFDA calculates RSSI variance with the mean value of received RSSIs. Then, we can get the correction weight. VFDA adjusts the fingerprint distances with the correction weight based on the variance of RSSI, which is used to correct the fingerprint distance. Besides, a threshold value is applied to VFDA to improve its performance further. VFDA and VFDA with the threshold value are applied in two kinds of real typical indoor environments deployed with several Wi-Fi access points. One is a quadrate lab room, and the other is a long and narrow corridor of a building. Experimental results and performance analysis show that in indoor environments, both VFDA and VFDA with the threshold have better positioning accuracy and environmental adaptability than the current typical positioning methods based on the k-nearest neighbor algorithm and the weighted k-nearest neighbor algorithm with similar computational costs.展开更多
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ...Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals.展开更多
In order to enhance the robustness and contrast in the minimum variance(MV) beamformer, adaptive diagonal loading method was proposed. The conventional diagonal loading technique has already been used in the MV beamfo...In order to enhance the robustness and contrast in the minimum variance(MV) beamformer, adaptive diagonal loading method was proposed. The conventional diagonal loading technique has already been used in the MV beamformer, but has the drawback that its level is specified by predefined parameter and without consideration of input-data. To alleviate this problem, the level of diagonal loading was computed appropriately and automatically from the given data by shrinkage method in the proposed adaptive diagonal loaded beamformer. The performance of the proposed beamformer was tested on the simulated point target and cyst phantom was obtained using Field II. In the point target simulation, it is shown that the proposed method has higher lateral resolution than the conventional delay-and-sum beamformer and could be more robust in estimating the amplitude peak than the MV beamformer when acoustic velocity error exists. In the cyst phantom simulation, the proposed beamformer has shown that it achieves an improvement in contrast ratio and without distorting the edges of cyst.展开更多
Background:Photosynthate partitioning and within-plant boll distribution play an important role in yield formation of cotton;however,if and how they interact to mediate yield remains unclear.The objective of this stud...Background:Photosynthate partitioning and within-plant boll distribution play an important role in yield formation of cotton;however,if and how they interact to mediate yield remains unclear.The objective of this study was to investigate the genotypic variance in photosynthate partitioning and within-plant boll distribution,with a focus on their interactions with regard to yield and yield components.A field experiment was conducted in the Yellow River region in China in 2017 and 2018 using a randomized complete block design with three replicates.Photosynthate partitioning of three commercial cultivars(DP 99 B,Lumianyan 21 and Jimian 169),varying in yield potential,to different organs(including bolls)at early flowering,peak flowering,and peak boll-setting stages,as well as withinplant boll distribution at harvest,and their effects on yield formation were examined.Results:Lint yield of Jimian 169 was the highest,followed by Lumianyan 21 and DP 99 B.Similar differences were observed in the number of inner bolls and boll weight among the three cultivars.J169 partitioned significantly more photosynthate to the fruit and fiber than Lumianyan 21 and DP 99 B and allocated over 80%of assimilates to the inner bolls.Additionally,Lumianyan 21 allocated a higher proportion of photosynthate to bolls and fiber,with12.5%–17.6%more assimilates observed in the inner bolls,than DP 99 B.Conclusions:Genotypic variance in lint yield can be attributed to differences in the number of inner bolls and boll weight,which are affected by photosynthate partitioning.Therefore,the partitioning of photosynthate to fiber and inner bolls can be used as an important reference for cotton breeding and cultivation.展开更多
Cover ratio of cloud is a very important factor which affects the quality of a satellite image, therefore cloud detection from satellite images is a necessary step in assessing the image quality. The study on cloud de...Cover ratio of cloud is a very important factor which affects the quality of a satellite image, therefore cloud detection from satellite images is a necessary step in assessing the image quality. The study on cloud detection from the visual band of a satellite image is developed. Firstly, we consider the differences between the cloud and ground including high grey level, good continuity of grey level, area of cloud region, and the variance of local fractal dimension (VLFD) of the cloud region. A single cloud region detection method is proposed. Secondly, by introducing a reference satellite image and by comparing the variance in the dimensions corresponding to the reference and the tested images, a method that detects multiple cloud regions and determines whether or not the cloud exists in an image is described. By using several Ikonos images, the performance of the proposed method is demonstrated.展开更多
In the recent research of network sampling, some sampling concepts are misunderstood, and the variance of subnets is not taken into account. We propose the correct definition of the sample and sampling rate in network...In the recent research of network sampling, some sampling concepts are misunderstood, and the variance of subnets is not taken into account. We propose the correct definition of the sample and sampling rate in network sampling, as well as the formula for calculating the variance of subnets. Then, three commonly used sampling strategies are applied to databases of the connecting nearest-neighbor(CNN) model, random network and small-world network to explore the variance in network sampling. As proved by the results, snowball sampling obtains the most variance of subnets, but does well in capturing the network structure. The variance of networks sampled by the hub and random strategy are much smaller. The hub strategy performs well in reflecting the property of the whole network, while random sampling obtains more accurate results in evaluating clustering coefficient.展开更多
In this paper, the temporal different characteristics between the target and background pixels are used to detect dim moving targets in the slow-evolving complex background. A local and global variance filter on tempo...In this paper, the temporal different characteristics between the target and background pixels are used to detect dim moving targets in the slow-evolving complex background. A local and global variance filter on temporal profiles is presented that addresses the temporal characteristics of the target and background pixels to eliminate the large variation of background temporal profiles. Firstly, the temporal behaviors of different types of image pixels of practical infrared scenes are analyzed.Then, the new local and global variance filter is proposed. The baseline of the fluctuation level of background temporal profiles is obtained by using the local and global variance filter. The height of the target pulse signal is extracted by subtracting the baseline from the original temporal profiles. Finally, a new target detection criterion is designed. The proposed method is applied to detect dim and small targets in practical infrared sequence images. The experimental results show that the proposed algorithm has good detection performance for dim moving small targets in the complex background.展开更多
We consider the robust H 2/H ∞ filtering problem for linear perturbed systems with steadystate error variance assignment. The generalized inverse technique of matrix is introduced, and a new algorithm is developed....We consider the robust H 2/H ∞ filtering problem for linear perturbed systems with steadystate error variance assignment. The generalized inverse technique of matrix is introduced, and a new algorithm is developed. After two Riccati equations are solved, the filter can be obtained directly, and the following three performance requirements are simultaneously satisfied: The filtering process is asymptotically stable; the steadystate variance of the estimation error of each state is not more than the individual prespecified upper bound; the transfer function from exogenous noise inputs to error state outputs meets the prespecified H ∞ norm upper bound constraint. A numerical example is provided to demonstrate the flexibility of the proposed design approach.展开更多
The Wigner-Ville distribution (WVD) and the cross Wigner-Ville distribution (XWVD) have been shown to be efficient in the estimation of instantaneous frequency (IF). But the statistical result of the IF estimati...The Wigner-Ville distribution (WVD) and the cross Wigner-Ville distribution (XWVD) have been shown to be efficient in the estimation of instantaneous frequency (IF). But the statistical result of the IF estimation from XWVD peak is much better than using WVD peak. The reason is given from a statistical point of view. Theoretical studies show that XWVD of the analyzed signal can be estimated from XWVD of the noise-contaminated signal. The estimation is unbiased, and the variance is equal to that of noise. In this case, WVD cannot be estimated from W-VD of the noise-contaminated signal. Therefore, higher SNR is required when WVD is used to analyze signals.展开更多
The instantaneous frequency (IF) estimation of the linear frequency modulated (LFM) signals with time-varying amplitude using the peak of the Wigner-Ville distribution (WVD) is studied. Theoretical analysis show...The instantaneous frequency (IF) estimation of the linear frequency modulated (LFM) signals with time-varying amplitude using the peak of the Wigner-Ville distribution (WVD) is studied. Theoretical analysis shows that the estimation on LFM signals with time-varying amplitude is unbiased, only if WVD of time-varying amplitude reaches its maximum at frequency zero no matter in which time. The statistical performance in the case of additive white Guassian noise is evaluated and an analytical expression for the variance is provided. The simulations using LFM signals with Gaussian envelope testify that IF can be estimated accurately using the peak of WVD for four models of amplitude variation. Furthermore the statistical result of estimation on the signals with amplitude descending before rising is better than that of the signals with constant amplitude when the amplitude variation rate is moderate.展开更多
In order to improve the performance of line spectrum detection,according to the feature that the underwater target radiated noise containing stable line spectrum,the differences of the phase difference between line sp...In order to improve the performance of line spectrum detection,according to the feature that the underwater target radiated noise containing stable line spectrum,the differences of the phase difference between line spectrum and background noise,a weighted line spectrum detection algorithm based on the phase variance is proposed in frequency domain.After phase difference alignment,the phase variance of line spectrum and the phase of background noise,respectively,are small and big in frequency domain,this method utilizes the weighted statistical algorithm to cumulate the frequency spectrum based on the phase variance,which can restrain the background noise disturbance,and enhance the signal to noise ratio(SNR).The theory analysis and experimental results both verify that the proposed method can well enhance the energy of line spectrum,restrain the energy of background noise,and have better detection performance under lower SNR.展开更多
Bistatic forward-looking synthetic aperture radar(SAR) has many advantages and applications owing to its twodimensional imaging capability.There could be various imaging configurations because of the geometric flexi...Bistatic forward-looking synthetic aperture radar(SAR) has many advantages and applications owing to its twodimensional imaging capability.There could be various imaging configurations because of the geometric flexibility of bistatic platforms,resulting in kinds of models built independently among which there could be some similar even the same motion features.Comprehensive research on such systems in a more comprehensive and general point of view is required to address their difference and consistency.Property analysis of bistatic forwardlooking SAR with arbitrary geometry is achieved including stripmap and spotlight modes on airborne platform,missile-borne platform,and hybrid platform of both.Emphasis is placed on azimuth space variance of some key parameters significantly affecting the subsequent imaging processing,based on which the frequency spectra are further described and compared considering respective features of different platforms for frequency imaging algorithm developing.Simulation results confirm the effectiveness and correctness of our analysis.展开更多
A systematic approach was presented to develop the empirical model for predicting the ultimate tensile strength of AA5083-H111 aluminum alloy which is widely used in ship building industry by incorporating friction st...A systematic approach was presented to develop the empirical model for predicting the ultimate tensile strength of AA5083-H111 aluminum alloy which is widely used in ship building industry by incorporating friction stir welding(FSW) process parameters such as tool rotational speed,welding speed,and axial force.FSW was carried out considering three-factor five-level central composite rotatable design with full replications technique.Response surface methodology(RSM) was applied to developing linear regression model for establishing the relationship between the FSW process parameters and ultimate tensile strength.Analysis of variance(ANOVA) technique was used to check the adequacy of the developed model.The FSW process parameters were also optimized using response surface methodology(RSM) to maximize the ultimate tensile strength.The joint welded at a tool rotational speed of 1 000 r/min,a welding speed of 69 mm/min and an axial force of 1.33 t exhibits higher tensile strength compared with other joints.展开更多
In order to solve the problem of coherent signal subspace method(CSSM) depending on the estimated accuracy of signal subspace, a new direction of arrival(DOA) estimation method of wideband source, which is based on it...In order to solve the problem of coherent signal subspace method(CSSM) depending on the estimated accuracy of signal subspace, a new direction of arrival(DOA) estimation method of wideband source, which is based on iterative adaptive spectral reconstruction, is proposed. Firstly, the wideband signals are divided into several narrowband signals of different frequency bins by discrete Fourier transformation(DFT). Then, the signal matched power spectrum in referenced frequency bins is computed, which can form the initial covariance matrix. Finally, the linear restrained minimum variance spectral(Capon spectral) of signals in other frequency bins are reconstructed using sequential iterative means, so the DOA can be estimated by the locations of spectral peaks. Theoretical analysis and simulation results show the proposed method based on the iterative spectral reconstruction for the covariance matrices of all sub-bands can avoid the problem of determining the signal subspace accurately with the coherent signal subspace method under the conditions of small samples and low signal to noise ratio(SNR), and it can also realize full dimensional focusing of different sub-band data, which can be applied to coherent sources and can significantly improve the accuracy of DOA estimation.展开更多
With the unique characteristics,electromagnetic launch technology is applicable to launch shipborne anti-torpedo torpedo(ATT).This paper aims to establish an analytic model to pre-evaluate the capture probability of t...With the unique characteristics,electromagnetic launch technology is applicable to launch shipborne anti-torpedo torpedo(ATT).This paper aims to establish an analytic model to pre-evaluate the capture probability of the electromagnetic launched ATT.The mathematics model of the multi-stage coilgun and the trajectory of the ATT is established for analysis.The influence factors of the capture probability are analyzed respectively,including the entry point dispersion of the ATT and the position dispersion of the incoming torpedo.Adopting the advanced angle interception mode,the ATT search model is obtained according to the positional relationship,and the course error is synthetically calculated according to the differentiation of implicit function.A geometric method to calculate the integral boundaries of the probability density function is proposed,based on the relative motion of the ATT and the incoming target.To verify the proposed integral model,the digital simulation and comparison is conducted.The results reveal that the variation trends and the calculation value of the proposed analytic model are coincident with the statistic results from Monte Carlo method.And implications of the results regarding the analytic model are discussed.展开更多
基金supported by the National Natural Science Foundation of China(6120200461472192)+1 种基金the Special Fund for Fast Sharing of Science Paper in Net Era by CSTD(2013116)the Natural Science Fund of Higher Education of Jiangsu Province(14KJB520014)
文摘The multipath effect and movements of people in indoor environments lead to inaccurate localization. Through the test, calculation and analysis on the received signal strength indication (RSSI) and the variance of RSSI, we propose a novel variance-based fingerprint distance adjustment algorithm (VFDA). Based on the rule that variance decreases with the increase of RSSI mean, VFDA calculates RSSI variance with the mean value of received RSSIs. Then, we can get the correction weight. VFDA adjusts the fingerprint distances with the correction weight based on the variance of RSSI, which is used to correct the fingerprint distance. Besides, a threshold value is applied to VFDA to improve its performance further. VFDA and VFDA with the threshold value are applied in two kinds of real typical indoor environments deployed with several Wi-Fi access points. One is a quadrate lab room, and the other is a long and narrow corridor of a building. Experimental results and performance analysis show that in indoor environments, both VFDA and VFDA with the threshold have better positioning accuracy and environmental adaptability than the current typical positioning methods based on the k-nearest neighbor algorithm and the weighted k-nearest neighbor algorithm with similar computational costs.
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China(No.11574250).
文摘Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals.
基金Project(2013GZX0147-3)supported by the Science and Technology Pillar Program of Sichuan Province,China
文摘In order to enhance the robustness and contrast in the minimum variance(MV) beamformer, adaptive diagonal loading method was proposed. The conventional diagonal loading technique has already been used in the MV beamformer, but has the drawback that its level is specified by predefined parameter and without consideration of input-data. To alleviate this problem, the level of diagonal loading was computed appropriately and automatically from the given data by shrinkage method in the proposed adaptive diagonal loaded beamformer. The performance of the proposed beamformer was tested on the simulated point target and cyst phantom was obtained using Field II. In the point target simulation, it is shown that the proposed method has higher lateral resolution than the conventional delay-and-sum beamformer and could be more robust in estimating the amplitude peak than the MV beamformer when acoustic velocity error exists. In the cyst phantom simulation, the proposed beamformer has shown that it achieves an improvement in contrast ratio and without distorting the edges of cyst.
基金supported by the Modern Agro-industry Technology Research System,China(SDAIT-03-03/05)the Natural Science Foundation of China(31601253)the Natural Science Foundation of Shandong Province,China(ZR2016CQ20)。
文摘Background:Photosynthate partitioning and within-plant boll distribution play an important role in yield formation of cotton;however,if and how they interact to mediate yield remains unclear.The objective of this study was to investigate the genotypic variance in photosynthate partitioning and within-plant boll distribution,with a focus on their interactions with regard to yield and yield components.A field experiment was conducted in the Yellow River region in China in 2017 and 2018 using a randomized complete block design with three replicates.Photosynthate partitioning of three commercial cultivars(DP 99 B,Lumianyan 21 and Jimian 169),varying in yield potential,to different organs(including bolls)at early flowering,peak flowering,and peak boll-setting stages,as well as withinplant boll distribution at harvest,and their effects on yield formation were examined.Results:Lint yield of Jimian 169 was the highest,followed by Lumianyan 21 and DP 99 B.Similar differences were observed in the number of inner bolls and boll weight among the three cultivars.J169 partitioned significantly more photosynthate to the fruit and fiber than Lumianyan 21 and DP 99 B and allocated over 80%of assimilates to the inner bolls.Additionally,Lumianyan 21 allocated a higher proportion of photosynthate to bolls and fiber,with12.5%–17.6%more assimilates observed in the inner bolls,than DP 99 B.Conclusions:Genotypic variance in lint yield can be attributed to differences in the number of inner bolls and boll weight,which are affected by photosynthate partitioning.Therefore,the partitioning of photosynthate to fiber and inner bolls can be used as an important reference for cotton breeding and cultivation.
基金supported by the National Natural Science Foundation of China(61702385)the Key Projects of National Social Science Foundation of China(11&ZD189)
文摘Cover ratio of cloud is a very important factor which affects the quality of a satellite image, therefore cloud detection from satellite images is a necessary step in assessing the image quality. The study on cloud detection from the visual band of a satellite image is developed. Firstly, we consider the differences between the cloud and ground including high grey level, good continuity of grey level, area of cloud region, and the variance of local fractal dimension (VLFD) of the cloud region. A single cloud region detection method is proposed. Secondly, by introducing a reference satellite image and by comparing the variance in the dimensions corresponding to the reference and the tested images, a method that detects multiple cloud regions and determines whether or not the cloud exists in an image is described. By using several Ikonos images, the performance of the proposed method is demonstrated.
基金supported by the Basic Research Fund of Beijing Institute of Technology(20120642008)
文摘In the recent research of network sampling, some sampling concepts are misunderstood, and the variance of subnets is not taken into account. We propose the correct definition of the sample and sampling rate in network sampling, as well as the formula for calculating the variance of subnets. Then, three commonly used sampling strategies are applied to databases of the connecting nearest-neighbor(CNN) model, random network and small-world network to explore the variance in network sampling. As proved by the results, snowball sampling obtains the most variance of subnets, but does well in capturing the network structure. The variance of networks sampled by the hub and random strategy are much smaller. The hub strategy performs well in reflecting the property of the whole network, while random sampling obtains more accurate results in evaluating clustering coefficient.
基金National Natural Science Foundation of China(61774120)
文摘In this paper, the temporal different characteristics between the target and background pixels are used to detect dim moving targets in the slow-evolving complex background. A local and global variance filter on temporal profiles is presented that addresses the temporal characteristics of the target and background pixels to eliminate the large variation of background temporal profiles. Firstly, the temporal behaviors of different types of image pixels of practical infrared scenes are analyzed.Then, the new local and global variance filter is proposed. The baseline of the fluctuation level of background temporal profiles is obtained by using the local and global variance filter. The height of the target pulse signal is extracted by subtracting the baseline from the original temporal profiles. Finally, a new target detection criterion is designed. The proposed method is applied to detect dim and small targets in practical infrared sequence images. The experimental results show that the proposed algorithm has good detection performance for dim moving small targets in the complex background.
文摘We consider the robust H 2/H ∞ filtering problem for linear perturbed systems with steadystate error variance assignment. The generalized inverse technique of matrix is introduced, and a new algorithm is developed. After two Riccati equations are solved, the filter can be obtained directly, and the following three performance requirements are simultaneously satisfied: The filtering process is asymptotically stable; the steadystate variance of the estimation error of each state is not more than the individual prespecified upper bound; the transfer function from exogenous noise inputs to error state outputs meets the prespecified H ∞ norm upper bound constraint. A numerical example is provided to demonstrate the flexibility of the proposed design approach.
基金the National Natural Science Foundation of China (60472102)Shanghai Leading Academic Discipline Project (T0103)the Foundation of Shanghai Municipal Commission of Education (A10-0109-06-022)
文摘The Wigner-Ville distribution (WVD) and the cross Wigner-Ville distribution (XWVD) have been shown to be efficient in the estimation of instantaneous frequency (IF). But the statistical result of the IF estimation from XWVD peak is much better than using WVD peak. The reason is given from a statistical point of view. Theoretical studies show that XWVD of the analyzed signal can be estimated from XWVD of the noise-contaminated signal. The estimation is unbiased, and the variance is equal to that of noise. In this case, WVD cannot be estimated from W-VD of the noise-contaminated signal. Therefore, higher SNR is required when WVD is used to analyze signals.
文摘The instantaneous frequency (IF) estimation of the linear frequency modulated (LFM) signals with time-varying amplitude using the peak of the Wigner-Ville distribution (WVD) is studied. Theoretical analysis shows that the estimation on LFM signals with time-varying amplitude is unbiased, only if WVD of time-varying amplitude reaches its maximum at frequency zero no matter in which time. The statistical performance in the case of additive white Guassian noise is evaluated and an analytical expression for the variance is provided. The simulations using LFM signals with Gaussian envelope testify that IF can be estimated accurately using the peak of WVD for four models of amplitude variation. Furthermore the statistical result of estimation on the signals with amplitude descending before rising is better than that of the signals with constant amplitude when the amplitude variation rate is moderate.
基金supported by the National Natural Science Foundation of China(61372180)the Young Talent Frontier Project of Institute of Acoustics of Chinese Academy of Sciences(Y454341261)
文摘In order to improve the performance of line spectrum detection,according to the feature that the underwater target radiated noise containing stable line spectrum,the differences of the phase difference between line spectrum and background noise,a weighted line spectrum detection algorithm based on the phase variance is proposed in frequency domain.After phase difference alignment,the phase variance of line spectrum and the phase of background noise,respectively,are small and big in frequency domain,this method utilizes the weighted statistical algorithm to cumulate the frequency spectrum based on the phase variance,which can restrain the background noise disturbance,and enhance the signal to noise ratio(SNR).The theory analysis and experimental results both verify that the proposed method can well enhance the energy of line spectrum,restrain the energy of background noise,and have better detection performance under lower SNR.
基金supported by the National Natural Science Foundation of China(6100121161303035+1 种基金61471283)the Fundamental Research Funds for the Central Universities(K5051202016)
文摘Bistatic forward-looking synthetic aperture radar(SAR) has many advantages and applications owing to its twodimensional imaging capability.There could be various imaging configurations because of the geometric flexibility of bistatic platforms,resulting in kinds of models built independently among which there could be some similar even the same motion features.Comprehensive research on such systems in a more comprehensive and general point of view is required to address their difference and consistency.Property analysis of bistatic forwardlooking SAR with arbitrary geometry is achieved including stripmap and spotlight modes on airborne platform,missile-borne platform,and hybrid platform of both.Emphasis is placed on azimuth space variance of some key parameters significantly affecting the subsequent imaging processing,based on which the frequency spectra are further described and compared considering respective features of different platforms for frequency imaging algorithm developing.Simulation results confirm the effectiveness and correctness of our analysis.
文摘A systematic approach was presented to develop the empirical model for predicting the ultimate tensile strength of AA5083-H111 aluminum alloy which is widely used in ship building industry by incorporating friction stir welding(FSW) process parameters such as tool rotational speed,welding speed,and axial force.FSW was carried out considering three-factor five-level central composite rotatable design with full replications technique.Response surface methodology(RSM) was applied to developing linear regression model for establishing the relationship between the FSW process parameters and ultimate tensile strength.Analysis of variance(ANOVA) technique was used to check the adequacy of the developed model.The FSW process parameters were also optimized using response surface methodology(RSM) to maximize the ultimate tensile strength.The joint welded at a tool rotational speed of 1 000 r/min,a welding speed of 69 mm/min and an axial force of 1.33 t exhibits higher tensile strength compared with other joints.
基金supported by the National Natural Science Foundation of China(61671352)the open foundation of Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(Guilin University of Electronic Technology)(CRKL160206)Xi’an University of Science and Technology Doctor(after)Start Gold Project(2017QDJ018)
文摘In order to solve the problem of coherent signal subspace method(CSSM) depending on the estimated accuracy of signal subspace, a new direction of arrival(DOA) estimation method of wideband source, which is based on iterative adaptive spectral reconstruction, is proposed. Firstly, the wideband signals are divided into several narrowband signals of different frequency bins by discrete Fourier transformation(DFT). Then, the signal matched power spectrum in referenced frequency bins is computed, which can form the initial covariance matrix. Finally, the linear restrained minimum variance spectral(Capon spectral) of signals in other frequency bins are reconstructed using sequential iterative means, so the DOA can be estimated by the locations of spectral peaks. Theoretical analysis and simulation results show the proposed method based on the iterative spectral reconstruction for the covariance matrices of all sub-bands can avoid the problem of determining the signal subspace accurately with the coherent signal subspace method under the conditions of small samples and low signal to noise ratio(SNR), and it can also realize full dimensional focusing of different sub-band data, which can be applied to coherent sources and can significantly improve the accuracy of DOA estimation.
基金National Natural Science Foundation of China(Grant No.51777212).
文摘With the unique characteristics,electromagnetic launch technology is applicable to launch shipborne anti-torpedo torpedo(ATT).This paper aims to establish an analytic model to pre-evaluate the capture probability of the electromagnetic launched ATT.The mathematics model of the multi-stage coilgun and the trajectory of the ATT is established for analysis.The influence factors of the capture probability are analyzed respectively,including the entry point dispersion of the ATT and the position dispersion of the incoming torpedo.Adopting the advanced angle interception mode,the ATT search model is obtained according to the positional relationship,and the course error is synthetically calculated according to the differentiation of implicit function.A geometric method to calculate the integral boundaries of the probability density function is proposed,based on the relative motion of the ATT and the incoming target.To verify the proposed integral model,the digital simulation and comparison is conducted.The results reveal that the variation trends and the calculation value of the proposed analytic model are coincident with the statistic results from Monte Carlo method.And implications of the results regarding the analytic model are discussed.