Bayes decision rule of variance components for one-way random effects model is derived and empirical Bayes (EB) decision rules are constructed by kernel estimation method. Under suitable conditions, it is shown that t...Bayes decision rule of variance components for one-way random effects model is derived and empirical Bayes (EB) decision rules are constructed by kernel estimation method. Under suitable conditions, it is shown that the proposed EB decision rules are asymptotically optimal with convergence rates near O(n-1/2). Finally, an example concerning the main result is given.展开更多
This paper derives the maximum posterior adjustment formulae of the extended network and the estimation formulaes of variance components of Helmert, Welsch and Frstner types when there are two types of uncorrelated ob...This paper derives the maximum posterior adjustment formulae of the extended network and the estimation formulaes of variance components of Helmert, Welsch and Frstner types when there are two types of uncorrelated observations in it, and perfects the theory of the maximum posterior adjustment.展开更多
In this paper we try to extract stable components in the extended-range forecast for the coming 10–30 days by using empirical orthogonal function (EOF) analysis, similarity coefficient, and some other methods based...In this paper we try to extract stable components in the extended-range forecast for the coming 10–30 days by using empirical orthogonal function (EOF) analysis, similarity coefficient, and some other methods based on the National Center for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis daily data. The comparisons of the coefficient of variance of climatological background field and truth data in winter between 2010 and 2011 are made. The method of extracting stable components and climatological background field can be helpful to increase forecasting skill. The forecasting skill improvement of air temperature is better than geopotential height at 500 hPa. Moreover, this method improves the predictability better in the Pacific Ocean. In China, the forecast in winter in Northeast China is more uncertain than in the other parts.展开更多
The present paper daisses the relative efficiencies of the least square estimates in linear models. For Gauss-Markoff model: Y=Xe + e E(e)= 0, Cov(e)=V, an new efficiencyo f least square estimate for linearly estimabl...The present paper daisses the relative efficiencies of the least square estimates in linear models. For Gauss-Markoff model: Y=Xe + e E(e)= 0, Cov(e)=V, an new efficiencyo f least square estimate for linearly estimable function c'r is proposed and its lower bound is giv-en. For variance component model: Y=X + e, E(e)=0, Cov(e)=, an new efficiency of least square estimate for linearly estimable function C'r is introduced for the first timeand its lower bound, which is independent of unknown parameters, is also obtained.展开更多
基金The project is partly supported by NSFC (19971085)the Doctoral Program Foundation of the Institute of High Education and the Special Foundation of Chinese Academy of Sciences.
文摘Bayes decision rule of variance components for one-way random effects model is derived and empirical Bayes (EB) decision rules are constructed by kernel estimation method. Under suitable conditions, it is shown that the proposed EB decision rules are asymptotically optimal with convergence rates near O(n-1/2). Finally, an example concerning the main result is given.
文摘This paper derives the maximum posterior adjustment formulae of the extended network and the estimation formulaes of variance components of Helmert, Welsch and Frstner types when there are two types of uncorrelated observations in it, and perfects the theory of the maximum posterior adjustment.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB430204)the National Natural Science Foundation of China(Grant Nos.40930952 and 41105070)the State Key Development Program for Basic Research of China(Grant No.2012CB955902)
文摘In this paper we try to extract stable components in the extended-range forecast for the coming 10–30 days by using empirical orthogonal function (EOF) analysis, similarity coefficient, and some other methods based on the National Center for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis daily data. The comparisons of the coefficient of variance of climatological background field and truth data in winter between 2010 and 2011 are made. The method of extracting stable components and climatological background field can be helpful to increase forecasting skill. The forecasting skill improvement of air temperature is better than geopotential height at 500 hPa. Moreover, this method improves the predictability better in the Pacific Ocean. In China, the forecast in winter in Northeast China is more uncertain than in the other parts.
文摘The present paper daisses the relative efficiencies of the least square estimates in linear models. For Gauss-Markoff model: Y=Xe + e E(e)= 0, Cov(e)=V, an new efficiencyo f least square estimate for linearly estimable function c'r is proposed and its lower bound is giv-en. For variance component model: Y=X + e, E(e)=0, Cov(e)=, an new efficiency of least square estimate for linearly estimable function C'r is introduced for the first timeand its lower bound, which is independent of unknown parameters, is also obtained.