This paper analyses the issue of impact time control of super-cavitation weapons impact fixed targets which mainly refer to the ships or submarines who lost power, but still have combat capability. Control over impact...This paper analyses the issue of impact time control of super-cavitation weapons impact fixed targets which mainly refer to the ships or submarines who lost power, but still have combat capability. Control over impact time constraints of guidance law(ITCG) is derived by using sliding mode control(SMC) and Lyapunov stability theorem. The expected impact time is realized by using the notion of attack process and estimated time-to-go to design sliding mode surface(SMS). ITCG contains equivalent and discontinuous guidance laws, once state variables arrive at SMS,the equivalent guidance law keeps the state variables on SMS,then the discontinuous guidance law enforces state variables to move and reach SMS. The singularity problem of ITCG is also analyzed. Theoretical analysis and numerical simulation results are given to test the effectiveness of ITCG designed in this paper.展开更多
In this paper, a novel fuzzy sliding mode control(FSMC) guidance law with terminal constraints of miss distance, impact angle and acceleration is presented for a constant speed missile against the stationary or slow...In this paper, a novel fuzzy sliding mode control(FSMC) guidance law with terminal constraints of miss distance, impact angle and acceleration is presented for a constant speed missile against the stationary or slowly moving target. The proposed guidance law combines the sliding mode control algorithm with a fuzzy logic control scheme for the lag-free system and the first-order lag system. Through using Lyapunov stability theory, we prove the sliding surface converges to zero in finite time. Furthermore, considering the uncertain information and system disturbances, the guidance gains are on-line optimized by fuzzy logic technique. Numerical simulations are performed to demonstrate the performance of the FSMC guidance law and the results illustrate the validity and effectiveness of the proposed guidance law.展开更多
Sliding mode control(SMC) becomes a common tool in designing robust nonlinear control systems, due to its inherent characteristics such as insensitivity to system uncertainties and fast dynamic response.Two modes are ...Sliding mode control(SMC) becomes a common tool in designing robust nonlinear control systems, due to its inherent characteristics such as insensitivity to system uncertainties and fast dynamic response.Two modes are involved in the SMC operation, namely reaching mode and sliding mode.In the reaching mode, the system state is forced to reach the sliding surface in a finite time.The major drawback of the SMC approach is the occurrence of chattering in the sliding mode, which is undesirable in most applications.Generally, the trade-off between chattering reduction and fast reaching time must be considered in the conventional SMC design.This paper proposes SMC design with a novel reaching law called the exponential rate reaching law(ERRL) to reduce chattering, and the control structure of the converter is designed based on the multiinput SMC that is applied to a three-phase AC/DC power converter.The simulation and experimental results show the effectiveness of the proposed technique.展开更多
An adaptive fuzzy sliding mode control (AFSMC) ap- proach is proposed for a robotic airship. First, the mathematical model of an airship is derived in the form of a nonlinear control system. Second, an AFSMC approac...An adaptive fuzzy sliding mode control (AFSMC) ap- proach is proposed for a robotic airship. First, the mathematical model of an airship is derived in the form of a nonlinear control system. Second, an AFSMC approach is proposed to design the attitude control system of airship, and the global stability of the closed-loop system is proved by using the Lyapunov stability theorem. Finally, simulation results verify the effectiveness and robustness of the proposed control approach in the presence of model uncertainties and external disturbances.展开更多
For the problem of attitude control of a quad tilt rotor aircraft with unknown external disturbances, a class of control methods based on a new exponential fast nonsingular terminal sliding surface, a new fast reachin...For the problem of attitude control of a quad tilt rotor aircraft with unknown external disturbances, a class of control methods based on a new exponential fast nonsingular terminal sliding surface, a new fast reaching law, and a super twisting sliding mode disturbance observer is investigated. First, the new exponential nonsingular terminal sliding surface is designed by using the advantages of nonsingular terminal sliding mode finite time convergence and strong robustness. Second, to solve the problem of a long convergence time and the serious shaking of the traditional reaching law, a new fast reaching law model with characteristics of the second-order sliding mode is put forward. Third,considering the existence of complex disturbances, the super twisting sliding mode disturbance observer is used to estimate and compensate the composite disturbances online. Finally, compared with the traditional nonsingular fast sliding mode control, simulation results show that the proposed control scheme achieves a good control performance.展开更多
A fast self-adapting high-order sliding mode(FSHOSM)controller is designed for a class of nonlinear systems with unknown uncertainties.As for uncertainty-free nonlinear system,a new switching condition is introduced i...A fast self-adapting high-order sliding mode(FSHOSM)controller is designed for a class of nonlinear systems with unknown uncertainties.As for uncertainty-free nonlinear system,a new switching condition is introduced into the standard geometric homogeneity.Different from the existing geometric homogeneity method,both state variables and their derivatives are considered to bring a reasonable effective switching condition.As a result,a faster convergence rate of state variables is achieved.Furthermore,based on the integral sliding mode(ISM)and above geometric homogeneity,a self-adapting high-order sliding mode(HOSM)control law is proposed for a class of nonlinear systems with uncertainties.The resulting controller allows the closed-loop system to conduct with the expected properties of strong robustness and fast convergence.Stable analysis of the nonlinear system is also proved based on the Lyapunov approach.The effectiveness of the resulting controller is verified by several simulation results.展开更多
Although the channel-decoupling assumption is often used in design of three-dimensional guidance laws, it loses its rationality for aircrafts with strong kinematics coupling because body rotation arises. To overcome t...Although the channel-decoupling assumption is often used in design of three-dimensional guidance laws, it loses its rationality for aircrafts with strong kinematics coupling because body rotation arises. To overcome this trouble, a novel guiding method was proposed based on Lie-group. After a model of 3D guidance is formulated using vectors, the precision guidance with ending angular constraints can be transformed into a problem involving the relation between directional angles and rotational angular velocities of certain vectors. When the guidance model is imposed a SO(3)-based description, a novel 3D sliding mode guidance law with ending angular constraints can be developed via Lie-group control method and variable structure control theory. Finally, the feasibility and performance of the guidance law were shown by simulating the examples.展开更多
The nonlinear dynamic model of spinning ballistic missiles is established during the first boosting phase of the missile. Based on the conventional backstepping sliding mode control and the assumption of a two time-sc...The nonlinear dynamic model of spinning ballistic missiles is established during the first boosting phase of the missile. Based on the conventional backstepping sliding mode control and the assumption of a two time-scale separation of missile dynamics, a graded sliding mode controller is designed with two sub-sliding surfaces which have invariability to external disturbances and parameter perturbations, and a matrix which comprises three first order low pass filters is introduced to prevent “explosion of terms”. Owing to the upper bounds of the uncertainties are difficult to obtain in advance, adaptive laws are introduced to estimate the values of the uncertainties in real-time. Eventually, the numerical simulation results given to show the proposed controller can ensure the steady flight of missiles.展开更多
基金supported by the National Natural Science Foundation of China(5137917651679201)
文摘This paper analyses the issue of impact time control of super-cavitation weapons impact fixed targets which mainly refer to the ships or submarines who lost power, but still have combat capability. Control over impact time constraints of guidance law(ITCG) is derived by using sliding mode control(SMC) and Lyapunov stability theorem. The expected impact time is realized by using the notion of attack process and estimated time-to-go to design sliding mode surface(SMS). ITCG contains equivalent and discontinuous guidance laws, once state variables arrive at SMS,the equivalent guidance law keeps the state variables on SMS,then the discontinuous guidance law enforces state variables to move and reach SMS. The singularity problem of ITCG is also analyzed. Theoretical analysis and numerical simulation results are given to test the effectiveness of ITCG designed in this paper.
基金supported by the National Natural Science Foundation of China(6130422461305018+1 种基金61472423)the National Advanced Research Project of China(51301010206)
文摘In this paper, a novel fuzzy sliding mode control(FSMC) guidance law with terminal constraints of miss distance, impact angle and acceleration is presented for a constant speed missile against the stationary or slowly moving target. The proposed guidance law combines the sliding mode control algorithm with a fuzzy logic control scheme for the lag-free system and the first-order lag system. Through using Lyapunov stability theory, we prove the sliding surface converges to zero in finite time. Furthermore, considering the uncertain information and system disturbances, the guidance gains are on-line optimized by fuzzy logic technique. Numerical simulations are performed to demonstrate the performance of the FSMC guidance law and the results illustrate the validity and effectiveness of the proposed guidance law.
文摘Sliding mode control(SMC) becomes a common tool in designing robust nonlinear control systems, due to its inherent characteristics such as insensitivity to system uncertainties and fast dynamic response.Two modes are involved in the SMC operation, namely reaching mode and sliding mode.In the reaching mode, the system state is forced to reach the sliding surface in a finite time.The major drawback of the SMC approach is the occurrence of chattering in the sliding mode, which is undesirable in most applications.Generally, the trade-off between chattering reduction and fast reaching time must be considered in the conventional SMC design.This paper proposes SMC design with a novel reaching law called the exponential rate reaching law(ERRL) to reduce chattering, and the control structure of the converter is designed based on the multiinput SMC that is applied to a three-phase AC/DC power converter.The simulation and experimental results show the effectiveness of the proposed technique.
基金supported by the Hunan Provincial Innovation Foundation for Postgraduate (CX2011B005)the National University of Defense Technlolgy Innovation Foundation for Postgraduate (B110105)
文摘An adaptive fuzzy sliding mode control (AFSMC) ap- proach is proposed for a robotic airship. First, the mathematical model of an airship is derived in the form of a nonlinear control system. Second, an AFSMC approach is proposed to design the attitude control system of airship, and the global stability of the closed-loop system is proved by using the Lyapunov stability theorem. Finally, simulation results verify the effectiveness and robustness of the proposed control approach in the presence of model uncertainties and external disturbances.
基金supported by the National Natural Science Foundation of China(11202162)
文摘For the problem of attitude control of a quad tilt rotor aircraft with unknown external disturbances, a class of control methods based on a new exponential fast nonsingular terminal sliding surface, a new fast reaching law, and a super twisting sliding mode disturbance observer is investigated. First, the new exponential nonsingular terminal sliding surface is designed by using the advantages of nonsingular terminal sliding mode finite time convergence and strong robustness. Second, to solve the problem of a long convergence time and the serious shaking of the traditional reaching law, a new fast reaching law model with characteristics of the second-order sliding mode is put forward. Third,considering the existence of complex disturbances, the super twisting sliding mode disturbance observer is used to estimate and compensate the composite disturbances online. Finally, compared with the traditional nonsingular fast sliding mode control, simulation results show that the proposed control scheme achieves a good control performance.
基金supported by the National Natural Science Foundation of China(61433003,60904003,11602019).
文摘A fast self-adapting high-order sliding mode(FSHOSM)controller is designed for a class of nonlinear systems with unknown uncertainties.As for uncertainty-free nonlinear system,a new switching condition is introduced into the standard geometric homogeneity.Different from the existing geometric homogeneity method,both state variables and their derivatives are considered to bring a reasonable effective switching condition.As a result,a faster convergence rate of state variables is achieved.Furthermore,based on the integral sliding mode(ISM)and above geometric homogeneity,a self-adapting high-order sliding mode(HOSM)control law is proposed for a class of nonlinear systems with uncertainties.The resulting controller allows the closed-loop system to conduct with the expected properties of strong robustness and fast convergence.Stable analysis of the nonlinear system is also proved based on the Lyapunov approach.The effectiveness of the resulting controller is verified by several simulation results.
基金Sponsored by the National Natural Science Foundation of China (60374006)
文摘Although the channel-decoupling assumption is often used in design of three-dimensional guidance laws, it loses its rationality for aircrafts with strong kinematics coupling because body rotation arises. To overcome this trouble, a novel guiding method was proposed based on Lie-group. After a model of 3D guidance is formulated using vectors, the precision guidance with ending angular constraints can be transformed into a problem involving the relation between directional angles and rotational angular velocities of certain vectors. When the guidance model is imposed a SO(3)-based description, a novel 3D sliding mode guidance law with ending angular constraints can be developed via Lie-group control method and variable structure control theory. Finally, the feasibility and performance of the guidance law were shown by simulating the examples.
文摘The nonlinear dynamic model of spinning ballistic missiles is established during the first boosting phase of the missile. Based on the conventional backstepping sliding mode control and the assumption of a two time-scale separation of missile dynamics, a graded sliding mode controller is designed with two sub-sliding surfaces which have invariability to external disturbances and parameter perturbations, and a matrix which comprises three first order low pass filters is introduced to prevent “explosion of terms”. Owing to the upper bounds of the uncertainties are difficult to obtain in advance, adaptive laws are introduced to estimate the values of the uncertainties in real-time. Eventually, the numerical simulation results given to show the proposed controller can ensure the steady flight of missiles.