针对传统的最大功率点追踪(Maximum Power Point Tracking,MPPT)算法陷入局部极值不能找到最大功率点(Maximum Power Point,MPP)以及传统的蝴蝶优化算法(Butterfly Optimization Algorithm,BOA)存在收敛速度慢和搜索震荡较大等问题,提...针对传统的最大功率点追踪(Maximum Power Point Tracking,MPPT)算法陷入局部极值不能找到最大功率点(Maximum Power Point,MPP)以及传统的蝴蝶优化算法(Butterfly Optimization Algorithm,BOA)存在收敛速度慢和搜索震荡较大等问题,提出一种改进的蝴蝶优化算法(Improved Butterfly Optimization Algorithm,IBOA)结合电导增量法(Conductance Increment Method,INC)的复合MPPT追踪方法。在IBOA中,引入自适应动态转换概率来平衡算法的全局与局部搜索,然后在全局搜索阶段引入Levy飞行策略,使蝴蝶个体广泛分布于搜索空间中,提高全局寻优能力;同时在局部搜索中设置新的寻优对象,并通过贪婪算法进行筛选保留,提高局部搜索的能力。当系统位于MPP附近时,利用INC局部搜索能力强的优点快速、准确地收敛到MPP并且稳定功率的输出。仿真结果表明,在静态和动态阴影下与BOA、PSO算法进行对比,所提算法具有更快的追踪速度、更高的追踪效率和更强的鲁棒性。展开更多
实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群...实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群(Particle swarm optimization, PSO)等群搜索算法应用在MPPT控制过程中,虽然能够控制工作点稳定在全局最大功率点处,但由于该算法收敛能力依赖于核心参数,在应用过程中有一定概率会导致系统振荡。针对以上问题,在电导增量法(Incremental conductance, INC)的基础上提出跃变探索式电导增量法(Jump explore incremental conductance, JEINC),相较于传统电导增量法而言,具有较强的探索能力,能够在局部阴影下实现全局最大功率点跟踪控制,同时所提算法具有较好的收敛能力,在工作点位于最大功率点附近能够快速稳定。在三种光照环境下进行Matlab仿真,从稳定时间、暂态过程能量损耗率和振荡幅值三个方面验证了所提算法相较于电导增量法和粒子群算法的优越性。展开更多
由于现今光伏系统使用场所的环境因素变化较大,需要有更高的转换效率和适应度,为了改善定步长电导增量法控制能力的局限性,使其适应在多变环境下的最大功率点跟踪控制。因此在定步长电导增量法的基础上,结合自适应最小均方差LMS(Least M...由于现今光伏系统使用场所的环境因素变化较大,需要有更高的转换效率和适应度,为了改善定步长电导增量法控制能力的局限性,使其适应在多变环境下的最大功率点跟踪控制。因此在定步长电导增量法的基础上,结合自适应最小均方差LMS(Least Mean Squre)算法,提出了一种改进的自适应变步长最大功率跟踪算法,并在Matlab环境下利用Simulink平台搭建光伏电池仿真模块及自适应变步长算法的S函数控制模块。仿真结果表明,该算法能够快速准确地跟踪最大功率点,并能保持系统的稳定性。展开更多
文摘针对传统的最大功率点追踪(Maximum Power Point Tracking,MPPT)算法陷入局部极值不能找到最大功率点(Maximum Power Point,MPP)以及传统的蝴蝶优化算法(Butterfly Optimization Algorithm,BOA)存在收敛速度慢和搜索震荡较大等问题,提出一种改进的蝴蝶优化算法(Improved Butterfly Optimization Algorithm,IBOA)结合电导增量法(Conductance Increment Method,INC)的复合MPPT追踪方法。在IBOA中,引入自适应动态转换概率来平衡算法的全局与局部搜索,然后在全局搜索阶段引入Levy飞行策略,使蝴蝶个体广泛分布于搜索空间中,提高全局寻优能力;同时在局部搜索中设置新的寻优对象,并通过贪婪算法进行筛选保留,提高局部搜索的能力。当系统位于MPP附近时,利用INC局部搜索能力强的优点快速、准确地收敛到MPP并且稳定功率的输出。仿真结果表明,在静态和动态阴影下与BOA、PSO算法进行对比,所提算法具有更快的追踪速度、更高的追踪效率和更强的鲁棒性。
文摘实现光伏阵列最大功率点跟踪(Maximum power point tracking, MPPT)的传统算法已经较为成熟,但是在局部阴影出现后会发生寻优失效,难以实现全局最大功率跟踪(Global maximum power tracking, GMPPT)。为解决该问题,研究人员提出将粒子群(Particle swarm optimization, PSO)等群搜索算法应用在MPPT控制过程中,虽然能够控制工作点稳定在全局最大功率点处,但由于该算法收敛能力依赖于核心参数,在应用过程中有一定概率会导致系统振荡。针对以上问题,在电导增量法(Incremental conductance, INC)的基础上提出跃变探索式电导增量法(Jump explore incremental conductance, JEINC),相较于传统电导增量法而言,具有较强的探索能力,能够在局部阴影下实现全局最大功率点跟踪控制,同时所提算法具有较好的收敛能力,在工作点位于最大功率点附近能够快速稳定。在三种光照环境下进行Matlab仿真,从稳定时间、暂态过程能量损耗率和振荡幅值三个方面验证了所提算法相较于电导增量法和粒子群算法的优越性。
文摘由于现今光伏系统使用场所的环境因素变化较大,需要有更高的转换效率和适应度,为了改善定步长电导增量法控制能力的局限性,使其适应在多变环境下的最大功率点跟踪控制。因此在定步长电导增量法的基础上,结合自适应最小均方差LMS(Least Mean Squre)算法,提出了一种改进的自适应变步长最大功率跟踪算法,并在Matlab环境下利用Simulink平台搭建光伏电池仿真模块及自适应变步长算法的S函数控制模块。仿真结果表明,该算法能够快速准确地跟踪最大功率点,并能保持系统的稳定性。