期刊文献+
共找到17,080篇文章
< 1 2 250 >
每页显示 20 50 100
Reheat effect on the improvement in efficiency of the turbine driven by pulse detonation
1
作者 Junyu Liu Zhiwu Wang +3 位作者 Zixu Zhang Junlin Li Weifeng Qin Jingjing Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期200-210,共11页
Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are di... Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are dissipated into the gas as heat energy,some of them can be recycled during the expansion process in subsequent stages by the reheat effect,which should be helpful to improve the detonationdriven turbine efficiency.Taking this into account,this paper developed a numerical model of the detonation chamber coupled with a two-stage axial turbine,and a stoichiometric hydrogen-air mixture was used.The improvement in turbine efficiency attributable to the reheat effect was calculated by comparing the average efficiency of the stages with the efficiency of the two-stage turbine.The research indicated that the first stage was critical in suppressing the flow unsteadiness caused by pulse detonation,which stabilized the intake condition of the second stage and consequently allowed much of the flow losses from the first stage to be recycled,so that the efficiency of the two-stage turbine was improved.At a 95%confidence level,the efficiency improvement was stable at 4.5%—5.3%,demonstrating that the reheat effect is significant in improving the efficiency of the detonation-driven turbine. 展开更多
关键词 Pulse detonation turbine engine Hydrogen detonation turbine efficiency Reheat effect Multi-cycle detonation
在线阅读 下载PDF
基于E-Wind Turbine实验平台的风力发电控制系统 被引量:3
2
作者 高哲 汪沛 +1 位作者 赵艳华 刘婷 《实验技术与管理》 CAS 北大核心 2015年第7期91-95,共5页
风力发电系统具有规模大、实际现场培训成本高、危险系数高等特点,因此基于风力发电仿真设备的风力发电控制研究是十分必要的。以E-Wind Turbine实验平台为例,详细介绍了变速、变桨距双馈风力发电系统实验平台的构成与控制策略的实现方... 风力发电系统具有规模大、实际现场培训成本高、危险系数高等特点,因此基于风力发电仿真设备的风力发电控制研究是十分必要的。以E-Wind Turbine实验平台为例,详细介绍了变速、变桨距双馈风力发电系统实验平台的构成与控制策略的实现方法。基于S7-1200系列的PLC控制器,利用PORTAL STEP 7集成开发环境,实现了风机的偏航、转速控制以及功率控制。仿真实验结果表明,设计的风力发电控制系统可以有效地模拟实际风力发电机的各种控制要求,为风力发电控制策略的研究提供了一种有效手段。 展开更多
关键词 双馈风力发电系统 E-Wind turbine实验平台 变速变桨距 S7-1200系列PLC
在线阅读 下载PDF
基于Turbine的数据字典管理系统模型 被引量:2
3
作者 周平 刘强 《计算机应用与软件》 CSCD 北大核心 2007年第4期75-77,共3页
为了有效解决信息化建设过程中存在的各种问题,提高数据标准化工作效率,结合目前Web开发应用领域使用较为广泛的Turbine技术,提出适合我国数据标准化建设需求的数据字典管理系统模型。该模型包括数据管理、数据统计和系统管理,分别实现... 为了有效解决信息化建设过程中存在的各种问题,提高数据标准化工作效率,结合目前Web开发应用领域使用较为广泛的Turbine技术,提出适合我国数据标准化建设需求的数据字典管理系统模型。该模型包括数据管理、数据统计和系统管理,分别实现了数据标准化的各项功能需求,以及系统的安全性要求。 展开更多
关键词 turbine 数据标准化 数据字典 信息化建设
在线阅读 下载PDF
Numerical simulation of cavitation turbulence in Francis turbine runner with splitter blades 被引量:2
4
作者 WANG Huiyan LIU Xiaobing +2 位作者 JIANG Qifeng HUA Hong OU Shunbing 《排灌机械工程学报》 EI CSCD 北大核心 2020年第1期45-51,共7页
Cavitation will reduce the turbine performance and even damage the turbine components.To verify the effects of splitter blades on improving the cavitation performance,the cavitation flow inside a Francis turbine runne... Cavitation will reduce the turbine performance and even damage the turbine components.To verify the effects of splitter blades on improving the cavitation performance,the cavitation flow inside a Francis turbine runner with splitter blades was numerically simulated by using the Singhal cavitation model and the standard k-ε turbulence model.The distributions of static pressure and gas volume fractions on the surface of the runner blades were predicated under different conditions,and the cavitation in the flow field of the runner was analyzed.The results show that the static pressure and gas volume fractions are more uniformly distributed on the short blades than those on the long blades in Francis turbines with splitter blades,and there is almost no cavitation on the short blades;their distributions are more uniform under small flow conditions than those under large flow conditions;and large gas volume fractions are concentrated at the outlet tip near the band on the suction side of the long blade.The installation of splitter blades can improve the cavitation performance of conventional Francis turbines. 展开更多
关键词 Francis turbine splitter blades RUNNER CAVITATION numerical simulation
在线阅读 下载PDF
Influence of propagation direction on operation performance of rotating detonation combustor with turbine guide vane 被引量:9
5
作者 Wan-li Wei Yu-wen Wu +1 位作者 Chun-sheng Weng Quan Zheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1617-1624,共8页
Due to the pressure gain combustion characteristics,the rotating detonation combustor(RDC)can enhance thermodynamic cycle efficiency.Therefore,the performance of gas-turbine engine can be further improved with this co... Due to the pressure gain combustion characteristics,the rotating detonation combustor(RDC)can enhance thermodynamic cycle efficiency.Therefore,the performance of gas-turbine engine can be further improved with this combustion technology.In the present study,the RDC operation performance with a turbine guide vane(TGV)is experimentally investigated.Hydrogen and air are used as propellants while hydrogen and air mass flow rate are about 16.1 g/s and 500 g/s and the equivalence ratio is about 1.0.A pre-detonator is used to ignite the mixture.High-frequency dynamic pressure transducers and silicon pressure sensors are employed to measure pressure oscillations and static pressure in the combustion chamber.The experimental results show that the steady propagation of rotating detonation wave(RDW)is observed in the combustion chamber and the mean propagation velocity is above 1650 m/s,reaching over 84%of theoretical Chapman-Jouguet detonation velocity.Clockwise and counterclockwise propagation directions of RDW are obtained.For clockwise propagation direction,the static pressure is about 15%higher in the combustor compared with counterclockwise propagation direction,but the RDW dominant frequency is lower.When the oblique shock wave propagates across the TGV,the pressure oscillations reduces significantly.In addition,as the detonation products flow through the TGV,the static pressure drops up to 32%and 43%for clockwise and counterclockwise propagation process respectively. 展开更多
关键词 Rotating detonation combustor Propagation direction turbine guide vane Operation performance
在线阅读 下载PDF
Simulation and analysis of humid air turbine cycle based on aeroderivative three-shaft gas turbine 被引量:2
6
作者 HUANG Di CHEN Jin-wei +2 位作者 ZHOU Deng-ji ZHANG Hui-sheng SU Ming 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第3期662-670,共9页
Due to the fact that the turbine outlet temperature of aeroderivative three-shaft gas turbine is low,the conventional combined cycle is not suitable for three-shaft gas turbines.However,the humid air turbine(HAT)cycle... Due to the fact that the turbine outlet temperature of aeroderivative three-shaft gas turbine is low,the conventional combined cycle is not suitable for three-shaft gas turbines.However,the humid air turbine(HAT)cycle provides a new choice for aeroderivative gas turbine because the humidification process does not require high temperature.Existing HAT cycle plants are all based on single-shaft gas turbines due to their simple structures,therefore converting aeroderivative three-shaft gas turbine into HAT cycle still lacks sufficient research.This paper proposes a HAT cycle model on a basis of an aeroderivative three-shaft gas turbine.Detailed HAT cycle modelling of saturator,gas turbine and heat exchanger are carried out based on the modular modeling method.The models are verified by simulations on the aeroderivative three-shaft gas turbine.Simulation results show that the studied gas turbine with original size and characteristics could not reach the original turbine inlet temperature because of the introduction of water.However,the efficiency still increases by 0.16%when the HAT cycle runs at the designed power of the simple cycle.Furthermore,simulations considering turbine modifications show that the efficiency could be significantly improved.The results obtained in the paper can provide reference for design and analysis of HAT cycle based on multi-shaft gas turbine especially the aeroderivative gas turbine. 展开更多
关键词 humid air turbine aeroderivative gas turbine SATURATOR SIMULATION
在线阅读 下载PDF
Parameter sensitivities analysis for classical flutter speed of a horizontal axis wind turbine blade 被引量:11
7
作者 GAO Qiang CAI Xin +1 位作者 GUO Xing-wen MENG Rui 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1746-1754,共9页
The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which compris... The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which comprises an aerodynamic part to calculate the aerodynamic loads and a structural part to determine the structural dynamic responses, is established to describe the classical flutter of the blades. For the aerodynamic part, Theodorsen unsteady aerodynamics model is used. For the structural part, Lagrange’s equation is employed. The flutter speed is determined by introducing “V–g” method to the aeroelastic model, which converts the issue of classical flutter speed determination into an eigenvalue problem. Furthermore, the time domain aeroelastic response of the wind turbine blade section is obtained with employing Runge-Kutta method. The results show that four cases (i.e., reducing the blade torsional stiffness, moving the center of gravity or the elastic axis towards the trailing edge of the section, and placing the turbine in high air density area) will decrease the flutter speed. Therefore, the judicious selection of the four parameters (the torsional stiffness, the chordwise position of the center of gravity, the elastic axis position and air density) can increase the relative inflow speed at the blade section associated with the onset of flutter. 展开更多
关键词 wind turbine blade aeroelastic model classical flutter parameter sensitivities analysis
在线阅读 下载PDF
Transient Model for Shafting Vibration of Hydro Turbine Generating Sets 被引量:1
8
作者 Zeng Yun Zhang Lixiang +2 位作者 Zhang Chengli Yu Fengrong Qian Jing 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第S1期190-196,共7页
The shafting vibration is closely related to the rotational angular speed.The angular speed of hydro turbine generating sets(HTGS)is rapidly change in fault transient,it maybe reduce the shafting damage.By means of en... The shafting vibration is closely related to the rotational angular speed.The angular speed of hydro turbine generating sets(HTGS)is rapidly change in fault transient,it maybe reduce the shafting damage.By means of energy analysis,the differential equation of shafting vibration for the HTGS is derived,in which include the equation of generator rotor and hydro turbine runner,it can be applied to transient analysis.Shafting model is transformed into first order differential equation groups,and is combined with the motion equation of HTGS to build integrated model.Various additional forces of shafting are taken as input inspire in proposed model,the generality of model is good.At last,the shafting vibration in emergency stop transient is simulated. 展开更多
关键词 hydro turbine GENERATING SETS SHAFTING VIBRATION transient model FAULT
在线阅读 下载PDF
An analytic electromagnetic calculation method for performance evolution of doubly fed induction generators for wind turbines 被引量:1
9
作者 张文娟 黄守道 +1 位作者 高剑 CHEN Zhe 《Journal of Central South University》 SCIE EI CAS 2013年第10期2763-2774,共12页
An analytic electromagnetic calculation method for doubly fed induction generator(DFIG) in wind turbine system was presented. Based on the operation principles, steady state equivalent circuit and basic equations of D... An analytic electromagnetic calculation method for doubly fed induction generator(DFIG) in wind turbine system was presented. Based on the operation principles, steady state equivalent circuit and basic equations of DFIG, the modeling for electromagnetic calculation of DFIG was proposed. The electromagnetic calculation of DFIG was divided into three steps: the magnetic flux calculation, parameters derivation and performance checks. For each step, the detailed numeric calculation formulas were all derived. Combining the calculation formulas, the whole electromagnetic calculation procedure was established, which consisted of three iterative calculation loops, including magnetic saturation coefficient, electromotive force and total output power. All of the electromagnetic and performance data of DIFG can be calculated conveniently by the established calculation procedure, which can be used to evaluate the new designed machine. A 1.5 MW DFIG designed by the proposed procedure was built, for which the whole type tests including no-load test, load test and temperature rising test were carried out. The test results have shown that the DFIG satisfies technical requirements and the test data fit well with the calculation results which prove the correctness of the presented calculation method. 展开更多
关键词 ELECTROMAGNETIC calculation DOUBLY fed INDUCTION generator(DFIG) wind turbine
在线阅读 下载PDF
Influence of different parameters on numerical simulation of vertical-axis marine current turbine based on OpenFOAM 被引量:3
10
作者 JI Renwei SHENG Qihu +3 位作者 SUN Ke LI Yan ZHANG Yuquan ZHANG Liang 《排灌机械工程学报》 EI CSCD 北大核心 2020年第4期365-371,共7页
Using the PimpleDyMFoam solver in open-source computing software OpenFOAM,based on the SST k-ωturbulence model and PIMPLE algorithm,a numerical simulation method of vertical-axis marine current turbines(VMCTs)is prop... Using the PimpleDyMFoam solver in open-source computing software OpenFOAM,based on the SST k-ωturbulence model and PIMPLE algorithm,a numerical simulation method of vertical-axis marine current turbines(VMCTs)is proposed,and the calculated results are compared with the experimental results.The results show that the numerical simulation method is feasible.Compared with other commercial softwares,this method has the advantages of higher solution efficiency and greater flexibility.According to the needs of users,the solver can be built on the basis of original code,and the corresponding discrete method can be optimized.This method can achieve optimization algorithms,save time and cost,etc.Secondly,the effects of different parameters(mesh density,time step,the selection of sidewall boundary conditions and inlet turbulence intensity)on numerical simulation of the VMCT are studied in detail.The findings summarize an effective CFD simulation strategy based on OpenFOAM and provide a valuable reference for future CFD simulations of VMCTs. 展开更多
关键词 numerical simulation hydrodynamic characteristics vertical-axis MARINE CURRENT turbine OPENFOAM
在线阅读 下载PDF
Effects analysis on catalytic combustion characteristic of hydrogen/air in micro turbine engine by fuzzy grey relation method 被引量:4
11
作者 E Jia-qiang WU Jiang-hua +3 位作者 LIU Teng CHEN Jing-wei DENG Yuan-wang PENG Qing-guo 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2214-2223,共10页
In order to enhance catalytic combustion efficiency, a premixed hydrogen /air combustion model of the micro turbine engine is established under different excess air ratio, inlet velocity and heat transfer coefficient.... In order to enhance catalytic combustion efficiency, a premixed hydrogen /air combustion model of the micro turbine engine is established under different excess air ratio, inlet velocity and heat transfer coefficient. And effects of inlet velocity, excess air coefficient and heat transfer coefficient on the catalytic combustion efficiency of the hydrogen have been analyzed by the FLUENT with CHEMKIN reaction mechanisms and the fuzzy grey relation theory. It is showed that inlet velocity has a more intuitive influence on the catalytic combustion efficiency of the hydrogen. A higher efficiency can be obtained with a lower inlet velocity. The optimum excess air coefficient is in the range of 0.94 to 1.0, the catalytic combustion efficiency of the hydrogen will be declined if the excess air coefficient exceeded 1.0. The effect of heat transfer coefficient on the catalytic combustion efficiency of the hydrogen mainly embodies in the case of the excess air coefficient exceeded 1.0, however, the effect will be declined if the heat transfer coefficient exceeded 4.0. The fuzzy grey relation degrees of the inlet velocity, heat transfer coefficient and excess air coefficient on the catalytic combustion efficiency of the hydrogen are 0.640945, 0.633214 and 0.547892 respectively. 展开更多
关键词 micro turbine engine catalytic combustion HYDROGEN fuzzy grey relation theory
在线阅读 下载PDF
Feasibility analysis for monitoring fatigue crack in hydraulic turbine blades using acoustic emission technique 被引量:2
12
作者 王向红 朱昌明 +1 位作者 毛汉领 黄振峰 《Journal of Central South University》 SCIE EI CAS 2009年第3期444-450,共7页
In order to investigate the feasibility of monitoring the fatigue cracks in turbine blades using acoustic emission (AE) technique, the AE characteristics of fatigue crack growth were studied in the laboratory. And the... In order to investigate the feasibility of monitoring the fatigue cracks in turbine blades using acoustic emission (AE) technique, the AE characteristics of fatigue crack growth were studied in the laboratory. And the characteristics were compared with those of background noise received from a real hydraulic turbine unit. It is found that the AE parameters such as the energy and duration can qualitatively describe the fatigue state of the blades. The correlations of crack propagation rates and acoustic emission count rates vs stress intensity factor (SIF) range are also obtained. At the same time, for the specimens of 20SiMn under the given testing conditions, it is noted that the rise time and duration of events emitted from the fatigue process are lower than those from the background noise; amplitude range is 49-74 dB, which is lower than that of the noise (90-99 dB); frequency range of main energy of crack signals is higher than 60 kHz while that in the noise is lower than 55 kHz. Thus, it is possible to extract the useful crack signals from the noise through appropriate signal processing methods and to represent the crack status of blade materials by AE parameters. As a result, it is feasible to monitor the safety of runners using AE technique. 展开更多
关键词 FATIGUE CRACK acoustic emission hydraulic turbine BLADE
在线阅读 下载PDF
Vertical axis wind turbine with omni-directional-guide-vane for urban high-rise buildings 被引量:4
13
作者 W. T. Chong S. C. Poh +1 位作者 A. Fazlizan K. C. Pan 《Journal of Central South University》 SCIE EI CAS 2012年第3期727-732,共6页
A novel shrouded wind-solar hybrid renewable energy and rain water harvester with an omni-directional-guide-vane(ODGV) for urban high-rise application is introduced.The ODGV surrounds the vertical axis wind turbine(VA... A novel shrouded wind-solar hybrid renewable energy and rain water harvester with an omni-directional-guide-vane(ODGV) for urban high-rise application is introduced.The ODGV surrounds the vertical axis wind turbine(VAWT) and enhances the VAWT performance by increasing the on-coming wind speed and guiding it to an optimum flow angle before it interacts with the rotor blades.An ODGV scaled model was built and tested in the laboratory.The experimental results show that the rotational speed of the VAWT increases by about 2 times.Simulations show that the installation of the ODGV increases the torque output of a single-bladed VAWT by 206% for tip speed ratio of 0.4.The result also reveals that higher positive torque can be achieved when the blade tangential force at all radial positions is optimized.In conclusion,the ODGV improves the power output of a VAWT and this integrated design promotes the installation of wind energy systems in urban areas. 展开更多
关键词 vertical axis wind turbine green architecture omni-directional-guide-vane wind-solar-rain water harvester urban wind energy generation
在线阅读 下载PDF
Multi-component opportunistic maintenance optimization for wind turbines with consideration of seasonal factor 被引量:2
14
作者 SU Chun HU Zhao-yong LIU Yang 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期490-499,共10页
Aiming at wind turbines,the opportunistic maintenance optimization is carried out for multi-component system,where minimal repair,imperfect repair,replacement as well as their effects on component’s effective age are... Aiming at wind turbines,the opportunistic maintenance optimization is carried out for multi-component system,where minimal repair,imperfect repair,replacement as well as their effects on component’s effective age are considered.At each inspection point,appropriate maintenance mode is selected according to the component’s effective age and its maintenance threshold.To utilize the maintenance opportunities for the components among the wind turbines,opportunistic maintenance approach is adopted.Meanwhile,the influence of seasonal factor on the component’s failure rate and improvement factor’s decrease with the increase of repair’s times are also taken into account.The maintenance threshold is set as the decision variable,and an opportunistic maintenance optimization model is proposed to minimize wind turbine’s life-cycle maintenance cost.Moreover,genetic algorithm is adopted to solve the model,and the effectiveness is verified with a case study.The results show that based on the component’s inherent reliability and maintainability,the proposed model can provide optimal maintenance plans accordingly.Furthermore,the higher the component’s reliability and maintainability are,the less the times of repair and replacement will be. 展开更多
关键词 wind turbine RELIABILITY seasonal factor multi-component maintenance opportunistic maintenance
在线阅读 下载PDF
Noise comparison of centrifugal pump operating in pump and turbine mode 被引量:5
15
作者 DONG Liang DAI Cui +1 位作者 LIN Hai-bo CHEN Yi-ping 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第11期2733-2753,共21页
Investigations regarding the relation of noise performance for centrifugal pump operating in pump and turbine modes continue to be inadequate.This paper presents a series of comparisons of flow-induced noise for both ... Investigations regarding the relation of noise performance for centrifugal pump operating in pump and turbine modes continue to be inadequate.This paper presents a series of comparisons of flow-induced noise for both operation modes.The interior flow-borne noise and structure modal were verified through experiments.The flow-borne noise was calculated by the acoustic boundary element method(ABEM),and the flow-induced structure noise was obtained by the coupled acoustic boundary element method(ABEM)/structure finite element method(SFEM).The results show that in pump mode,the pressure fluctuation in the volute is comparable to that in the outlet pipe,but in turbine mode,the pressure fluctuation in the impeller is comparable to that in the draft tube.The main frequency of interior flow-borne noise lies at blade passing frequency(BPF)and it shifts to the 9th BPF for interior flow-induced structure noise.The peak values at horizontal plane appear at the 5th BPF,and at axial plane,they get the highest sound pressure level(SPL)at the 8th BPF.Comparing with interior noise,the SPL of exterior flow-induced structure noise is incredibly small.At the 5th BPF,the pump body,cover and suspension show higher SPL in both modes.The outer walls of turbine generate relatively larger SPL than those of the pump. 展开更多
关键词 centrifugal pump as turbine noise performance acoustic boundary element method acoustic finite element method
在线阅读 下载PDF
Effect of blade pitch angle on aerodynamic performance of straight-bladed vertical axis wind turbine 被引量:3
16
作者 张立勋 梁迎彬 +1 位作者 刘小红 郭健 《Journal of Central South University》 SCIE EI CAS 2014年第4期1417-1427,共11页
Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct... Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct advantages, but suffers from poor self-starting and low power coefficient. Variable-pitch method was recognized as an attractive solution to performance improvement, thus majority efforts had been devoted into blade pitch angle effect on aerodynamic performance. Taken into account the local flow field of S-VAWT, mathematical model was built to analyze the relationship between power outputs and pitch angle. Numerical simulations on static and dynamic performances of blade were carried out and optimized pitch angle along the rotor were presented. Comparative analyses of fixed pitch and variable-pitch S-VAWT were conducted, and a considerable improvement of the performance was obtained by the optimized blade pitch angle, in particular, a relative increase of the power coefficient by more than 19.3%. It is further demonstrated that the self-starting is greatly improved with the optimized blade pitch angle. 展开更多
关键词 straight-bladed vertical axis wind turbine pitch angle numerical simulation self-starting power coefficient
在线阅读 下载PDF
Research on Low Cycle Fatigue Reliability-based Robust Design Optimization of Turbine Blade 被引量:8
17
作者 PENG Maolin YANG Zichun CAO Yueyun CHU Zhuli 《中国电机工程学报》 EI CSCD 北大核心 2013年第11期I0015-I0015,17,共1页
针对涡轮叶片低周疲劳可靠性稳健设计优化问题,对叶片材料进行了高温疲劳试验,采用定量方程随机化方法处理试验数据,获得叶片材料的概率-应变-寿命曲线。采用贝塞尔曲线描述叶片型线方程,建立了涡轮叶片结构及流场的参数化模型,采... 针对涡轮叶片低周疲劳可靠性稳健设计优化问题,对叶片材料进行了高温疲劳试验,采用定量方程随机化方法处理试验数据,获得叶片材料的概率-应变-寿命曲线。采用贝塞尔曲线描述叶片型线方程,建立了涡轮叶片结构及流场的参数化模型,采用热-流-固耦合有限元法对涡轮流场和叶片进行了数值分析,得到叶片动能效率和应力应变分布特性。建立了叶片疲劳可靠性稳健设计优化模型,并采用响应面法获得叶片结构性能函数和极限状态函数,将叶片低周疲劳可靠性作为基本约束条件,采用序列二次规划优化法得到设计优化结果。研究结果表明,优化后的叶片低周疲劳可靠性以及稳健性显著提高,模型及方法正确可行,可用于涡轮叶片以及其他复杂结构的低周疲劳可靠性稳健设计优化。 展开更多
关键词 燃气涡轮叶片 稳健优化设计 疲劳可靠性 低循环 低周疲劳损伤 燃气涡轮机 燃气轮机 破坏模式
在线阅读 下载PDF
Influence of liquid water content on wind turbine blade icing by numerical simulation
18
作者 LI Yan SUN Ce +4 位作者 JIANG Yu YI Xian GUO Wenfeng WANG Shaolong FENG Fang 《排灌机械工程学报》 EI CSCD 北大核心 2019年第6期513-520,共8页
In order to research the influence of liquid water content ( LWC ) on blade icing of wind turbine, a numerical simulation method for blade icing was established. The numerical simulation was based on low speed viscous... In order to research the influence of liquid water content ( LWC ) on blade icing of wind turbine, a numerical simulation method for blade icing was established. The numerical simulation was based on low speed viscous N-S equation. The trajectory equation of water droplets was established by Lagrangian method. The mass and energy conservation equations of the water droplets impacting on the surface of the blade were solved based on control body theory. Three sections along blade span wise of a 1.5 MW wind turbine were decided to simulate icing. Five kinds of LWC were selected for simulation including 0.2,0.4,0.6,0.8 and 1.0 g/m^3 under two ambient temperatures of -10 ℃ and -20 ℃. The medium volume droplet diameter ( MVD ) was 30μm. The simulations included icing shape on blade surface, dimensionless icing area and dimensionless maximum stagnation thickness. Furthermore, the flow fields around both the iced blade airfoil and the original one were simulated and analyzed. Accor-ding to the results, the typical icing characteristics of icing shape, icing area and thickness were greatly affected by the difference of LWCs. This study can provide theoretical reference for the research on antiicing and deicing of wind turbine blade. 展开更多
关键词 WIND turbine ICING AIRFOIL NUMERICAL simulation liquid water CONTENT
在线阅读 下载PDF
A wind tunnel experiment of self-starting capability for straight-bladed vertical axis wind turbine
19
作者 TAGAWA Kotaro LI Yan 《排灌机械工程学报》 EI CSCD 北大核心 2018年第2期136-140,153,共6页
In this study,wind tunnel experiment was carried out to investigate the self-staring capability for straight-bladed vertical axis wind turbine.The flow visualization also was been performed at the rest of the rotor.Th... In this study,wind tunnel experiment was carried out to investigate the self-staring capability for straight-bladed vertical axis wind turbine.The flow visualization also was been performed at the rest of the rotor.The effect of the azimuthal angle of blade position relative to wind direction on the self-starting capability was discussed based on the results of flow visualization.The torque and centripetal force of the rotor when the self-starting behavior starts were roughly calculated with the flow visualization results of the rotor.It is suggested that there exists the condition of wind speed and configuration of the blade position of the rotor at the rest of rotor to the reach to situational rotation number. 展开更多
关键词 STRAIGHT BLADES vertical axis WIND turbine SELF-STARTING WIND TUNNEL test flow visualization
在线阅读 下载PDF
Modeling Research on a Solar Tower Thermal Collection-natural Gas Turbine Power System 被引量:6
20
作者 XU Chang LI Min YUAN Yuan GUO Su LIU Deyou ZHENG Yuan 《中国电机工程学报》 EI CSCD 北大核心 2013年第32期I0010-I0010,4,共1页
塔式太阳能-燃气轮机发电系统发电成本和研发风险都低于常规太阳能热发电系统,同时能克服太阳能随机性、波动性的缺点,可以推动太阳能热发电的商业化进程。为了研究塔式太阳能与燃气轮机发电系统的能量传递与热功转化规律,以及相关... 塔式太阳能-燃气轮机发电系统发电成本和研发风险都低于常规太阳能热发电系统,同时能克服太阳能随机性、波动性的缺点,可以推动太阳能热发电的商业化进程。为了研究塔式太阳能与燃气轮机发电系统的能量传递与热功转化规律,以及相关结构参数与运行参数对发电系统性能的影响,该文分别建立该系统中压气机、泡沫陶瓷吸热器、燃烧室、透平4部分的传热和热功转化模型,采用Matlab软件平台编程,进行了系统运行仿真模拟,并分析了压比、孔隙率、厚度、吸热器面积、进气温度等对系统性能的影响。研究结果可为系统的设计与运行提供参考。 展开更多
关键词 太阳能利用 发电系统 燃气轮机 塔式 建模 天然 热工 商业化进程
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部