Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and ev...Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and even a chaotic or hyperchaotic system,the response network is complex system coupled by N nodes,and every node is showed by the approximately linear part of the drive system.Only controlling any one node of the response network by designed controller can achieve the projective synchronization.Some numerical examples were employed to verify the effectiveness and correctness of the designed controller.展开更多
The worm wheel whose undercutting characteristic is researched is a member of offsetting normal arc-toothed cylindrical worm drive.The tooth profile of the worm in its offsetting normal section is a circular arc.The n...The worm wheel whose undercutting characteristic is researched is a member of offsetting normal arc-toothed cylindrical worm drive.The tooth profile of the worm in its offsetting normal section is a circular arc.The normal vector used to calculate the first-type limit function is determined in the natural frame without the aid of the curvature parameter of worm helicoid.The first-type limit line is ascertained via solving the nonlinear equations iteratively.It is discovered that one first-type limit line exists on the tooth surface of worm wheel by numerical simulation,and such a line is normally located out of the meshing zone.Only one intersection point exists between the first and second-types of limit lines,and this point is a lubrication weak point.The undercutting mechanism is essentially that a part of the meshing zone near the conjugated line of worm tooth crest will come into the undercutting area and will be cut off during machining the worm wheel.The machining simulation verifies the correctness of undercutting mechanism.Moreover,a convenient and practical characteristic quantity is proposed to judge whether the undercutting exists in the whole meshing zone via computing the first-type limit function values on the worm tooth crest.展开更多
基金Supported by the National Natural Science Foundation of China (11161027)。
文摘Projective synchronization problems of a drive system and a particular response network were investigated,where the drive system is an arbitrary system with n+1 dimensions;it may be a linear or nonlinear system,and even a chaotic or hyperchaotic system,the response network is complex system coupled by N nodes,and every node is showed by the approximately linear part of the drive system.Only controlling any one node of the response network by designed controller can achieve the projective synchronization.Some numerical examples were employed to verify the effectiveness and correctness of the designed controller.
基金Projects(52205069,52075083,52304049)supported by the National Natural Science Foundation of ChinaProject(2021-BS-164)supported by the Liaoning Province Doctoral Research Startup Fund,China+2 种基金Project(LJKZ0264)supported by the Science and Technology Research Projects of Education Department of Liaoning Province,ChinaProject(G2022003010L)supported by the High-end Foreign Experts Recruitment Plan of ChinaProject(E2021203095)supported by the Natural Science Foundation for Young Scholars of Hebei Province,China。
文摘The worm wheel whose undercutting characteristic is researched is a member of offsetting normal arc-toothed cylindrical worm drive.The tooth profile of the worm in its offsetting normal section is a circular arc.The normal vector used to calculate the first-type limit function is determined in the natural frame without the aid of the curvature parameter of worm helicoid.The first-type limit line is ascertained via solving the nonlinear equations iteratively.It is discovered that one first-type limit line exists on the tooth surface of worm wheel by numerical simulation,and such a line is normally located out of the meshing zone.Only one intersection point exists between the first and second-types of limit lines,and this point is a lubrication weak point.The undercutting mechanism is essentially that a part of the meshing zone near the conjugated line of worm tooth crest will come into the undercutting area and will be cut off during machining the worm wheel.The machining simulation verifies the correctness of undercutting mechanism.Moreover,a convenient and practical characteristic quantity is proposed to judge whether the undercutting exists in the whole meshing zone via computing the first-type limit function values on the worm tooth crest.