期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于自适应LPP特征降维和改进VPMCD的滚动轴承故障诊断 被引量:1
1
作者 王斐 许波 《现代制造工程》 CSCD 北大核心 2024年第6期154-161,94,共9页
针对机械系统状态监测与故障诊断中存在的故障特征维数较高及模式识别导致的耗时较高问题,提出了一种基于自适应局部保持投影(Locality Preserving Projection,LPP)特征降维和改进多变量预测模型(Variable Predictive Model based Class... 针对机械系统状态监测与故障诊断中存在的故障特征维数较高及模式识别导致的耗时较高问题,提出了一种基于自适应局部保持投影(Locality Preserving Projection,LPP)特征降维和改进多变量预测模型(Variable Predictive Model based Class Discriminate,VPMCD)的故障诊断方法。首先,从滚动轴承振动信号中提取时频域特征、能量特征,以及复杂度特征组成高维故障特征数据集;其次,利用自适应LPP方法对高维故障特征数据集进行降维处理,得到低维敏感故障特征;最后,采用改进VPMCD方法对低维敏感故障特征进行分类识别,进而判断故障类型。通过滚动轴承故障诊断试验分析表明,自适应LPP方法克服了传统LPP方法需要人工选取参数的缺陷,在获得低维敏感故障特征的基础上具有较少计算时间,相比主成分分析(Principal Component Analysis,PCA)、局部切空间排列(Local Tangent Space Alignment,LTSA)、线性局部切空间排列(Linear Local Tangent Space Alignment,LLTSA)、等距特征映射(Isometric Mapping,Isomap),以及局部线性嵌入(Locally Linear Embedding,LLE)等算法具有明显的优势;改进VPMCD方法可克服人工选择模型的偶然性和片面性,在滚动轴承10种故障状态的识别中获得了99.4%的诊断精度,相比优化参数支持向量机方法提高了故障诊断效率,大大降低了识别时间,具有一定的优越性。 展开更多
关键词 滚动轴承 故障诊断 特征降维 模式识别 局部保持投影 多变量预测模型
在线阅读 下载PDF
基于VPMCD的变压器局部放电模式识别 被引量:1
2
作者 张蒙 朱永利 +2 位作者 贾亚飞 张宁 张媛媛 《电测与仪表》 北大核心 2017年第8期47-51,共5页
识别局部放电的类型对变压器状态评估十分重要。文中构造了四种变压器局部放电实物模型,从放电信号中提取18个统计特征量,使用基于变量预测模型的模式识别方法(Variable Predictive Model based Class Discriminate method,VPMCD)完成... 识别局部放电的类型对变压器状态评估十分重要。文中构造了四种变压器局部放电实物模型,从放电信号中提取18个统计特征量,使用基于变量预测模型的模式识别方法(Variable Predictive Model based Class Discriminate method,VPMCD)完成局部放电信号的分类。对比实验结果表明,VPMCD方法在识别率和计算效率均高于BP神经网络。 展开更多
关键词 变量预测模型 变压器 局部放电 模式识别
在线阅读 下载PDF
RWESOS-VPMCD方法对超声缺陷信号的识别研究 被引量:5
3
作者 唐东林 陈印 +2 位作者 潘峰 李龙 谢光磊 《机械科学与技术》 CSCD 北大核心 2021年第7期1072-1078,共7页
在通过特征值间的内在关系建立预测模型的变量预测模式识别方法(VPMCD)中,传统判别方法受特征向量中的个别特征预测异常值影响大,易导致分类错误。提出基于比值加权的最小误差平方和的判别函数(RWESOS),可将异常预测的特征权重大幅降低... 在通过特征值间的内在关系建立预测模型的变量预测模式识别方法(VPMCD)中,传统判别方法受特征向量中的个别特征预测异常值影响大,易导致分类错误。提出基于比值加权的最小误差平方和的判别函数(RWESOS),可将异常预测的特征权重大幅降低,提升正确预测特征的权重,从而提高分类准确率。实验表明,在对不同缺陷大小的超声检测信号的识别中,使用RWESOS判别函数的RWESOS-VPMCD方法的识别率比BP神经网络和普通判别函数的VPMCD方法的识别率分别提高了4%和11%。 展开更多
关键词 超声信号 变量预测模型 RWESOS判别函数 模式识别
在线阅读 下载PDF
基于参数优化VMD和增强多尺度排列熵的单向阀故障诊断 被引量:24
4
作者 潘震 黄国勇 吴漫 《振动与冲击》 EI CSCD 北大核心 2020年第15期118-125,共8页
针对高压隔膜泵机械结构复杂,单向阀故障特征信息分布在多尺度上,单一尺度难以全面提取特征的问题,提出了一种基于参数优化变分模态分解(Variational Mode Decomposition,VMD)和增强多尺度排列熵(Enhanced Multi-scale Permutation Entr... 针对高压隔膜泵机械结构复杂,单向阀故障特征信息分布在多尺度上,单一尺度难以全面提取特征的问题,提出了一种基于参数优化变分模态分解(Variational Mode Decomposition,VMD)和增强多尺度排列熵(Enhanced Multi-scale Permutation Entropy,EMPE)的单向阀故障诊断方法。对单向阀振动信号进行VMD分解,以包络熵最小原则对其进行参数优化,获得既定的若干本征模态函数(Intrinsic Mode Function,IMF)分量;计算IMF分量的增强多尺度排列熵,构建故障特征值向量;利用基于变量预测模型的模式识别(Variable Predictive Model Based Class Discriminate,VPMCD)方法对故障特征值向量进行训练和识别,进而实现单向阀的故障诊断。仿真信号和工程实验分析表明,该方法可以准确地识别单向阀的故障类型,具有一定的可靠性和工程应用价值。 展开更多
关键词 变分模态分解 增强多尺度排列熵 基于变量预测模型的模式识别 单向阀 故障诊断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部