提出了基于VPMCD(Variable Predictive Model Based Class Discriminate,简称VPMCD)和EMD(Empirical mode decomposition,简称EMD)的齿轮故障诊断方法,并将它应用于齿轮稳态信号的分析。VPMCD方法是一种新的模式识别方法,特别适合于非...提出了基于VPMCD(Variable Predictive Model Based Class Discriminate,简称VPMCD)和EMD(Empirical mode decomposition,简称EMD)的齿轮故障诊断方法,并将它应用于齿轮稳态信号的分析。VPMCD方法是一种新的模式识别方法,特别适合于非线性分类问题,它充分利用从原始数据中所提取的特征值之间的相互内在关系建立数学模型,从而进行模式识别。在基于VPMCD和EMD的齿轮故障诊断方法中,首先采用EMD方法将齿轮振动信号自适应地分解为若干个单分量信号,然后提取各个分量的样本熵并将其作为特征值,最后采用VPMCD分类器进行故障识别和分类。结果表明该方法能够有效地突出齿轮故障振动信号的故障特征,提高了齿轮故障诊断的准确性。展开更多
基于变量预测模型的模式识别(variable predictive model based class discriminate,VPMCD)方法是一种充分利用特征值之间相互内在关系进行多分类模式识别的新方法。对VPMCD算法进行了研究,并采用交叉验证法来选择VPMCD模型。针对机械...基于变量预测模型的模式识别(variable predictive model based class discriminate,VPMCD)方法是一种充分利用特征值之间相互内在关系进行多分类模式识别的新方法。对VPMCD算法进行了研究,并采用交叉验证法来选择VPMCD模型。针对机械故障振动信号的特征值之间的相互内在关系,结合本征时间尺度分解(intrinsic time-scale decom-position,ITD),提出了一种基于本征时间尺度分解和VPMCD的机械故障诊断方法。该方法首先利用ITD方法将原始信号分解若干个PR(proper rotation,PR)分量,然后提取第一个PR分量的无量纲时域统计参数组成特征向量,最后采用VPMCD方法进行机械故障诊断。通过滚动轴承故障诊断实验验证了该方法能有效地应用于小样本多分类机械故障诊断。展开更多
VPMCD(Variable Predictive Model Based Class Discriminate)是一种新的模式识别方法,它充分利用从原始数据中所提取的特征值之间的相互内在关系建立数学模型,从而进行模式识别。论文将VPMCD结合排列熵(Permutation Entropy,简称PE)方...VPMCD(Variable Predictive Model Based Class Discriminate)是一种新的模式识别方法,它充分利用从原始数据中所提取的特征值之间的相互内在关系建立数学模型,从而进行模式识别。论文将VPMCD结合排列熵(Permutation Entropy,简称PE)方法应用于滚动轴承故障诊断。首先采用ITD(Intrinsic Time-scale Decomposition,简称ITD)对滚动轴承振动信号进行分解,得到若干个固有旋转(Proper Rotation)分量,并对包含主要故障信息的PR分量提取排列熵作为故障特征值;然后,对VPMCD分类器进行训练;最后,采用VPMCD分类器进行故障识别和分类。实验数据的分析结果表明该方法能够有效地应用于滚动轴承故障诊断。展开更多
针对旋转机械故障诊断方法中信号处理和模式识别的不足,即端点效应和判别片面性问题,提出一种基于互相关匹配延拓局部特征尺度分解(Cross-correlation matching endpoint Extension Local Characteristic scale Decomposition,CELCD)和...针对旋转机械故障诊断方法中信号处理和模式识别的不足,即端点效应和判别片面性问题,提出一种基于互相关匹配延拓局部特征尺度分解(Cross-correlation matching endpoint Extension Local Characteristic scale Decomposition,CELCD)和改进多变量预测模型(Variable Predictive Model based Class Discriminate,VPMCD)的智能故障诊断方法,首先探索待分解信号前后端的数据规律,选取匹配波形完成端点延拓,然后利用局部特征尺度分解(Local Characteristic scale Decomposition,LCD)得到各去除端点效应的内禀尺度分量(Intrinsic Scale Component,ISC),最后输入到基于多模型融合的多变量预测模型(Multi-model Fusion-Variable Predictive Model based Class Discriminate,MFVPMCD)分类器中进行概率状态判定.实验分析结果表明,所提方法能有效地对滚动轴承的工作状态进行识别.展开更多
针对液压泵故障信号的非平稳特性以及其退化状态难以识别的问题,结合局部特征尺度分解与信息熵理论,提出了局部特征尺度分解谱熵的退化特征提取方法,并将基于变量预测模型的模式识别(Variable Predictive Model based Class Discriminat...针对液压泵故障信号的非平稳特性以及其退化状态难以识别的问题,结合局部特征尺度分解与信息熵理论,提出了局部特征尺度分解谱熵的退化特征提取方法,并将基于变量预测模型的模式识别(Variable Predictive Model based Class Discriminate,VPMCD)方法引入到液压泵的退化状态识别。对不同程度故障的液压泵振动信号进行局部特征尺度分解,从得到的内禀尺度分量中提取振动信号的复杂度和随机性度量指标能谱熵、奇异谱熵和包络谱熵,以其作为液压泵的退化特征向量,通过建立VPMCD退化状态识别模型实现液压泵的退化状态识别。仿真信号分析结果验证了所提出的局部特征尺度分解谱熵具有较好的表征液压泵故障退化状态的能力。通过对实测液压泵松靴和滑靴磨损两种故障模式下的退化状态振动信号进行分析验证了提出方法的有效性。展开更多
针对齿轮故障诊断中难以获得大量故障样本的问题及实时在线诊断的需求,提出了一种基于增量式半监督多变量预测模型(Incremental Semi-supervised Variable Predictive Model based Class Discriminate,ISVPMCD)的齿轮故障在线检测方法...针对齿轮故障诊断中难以获得大量故障样本的问题及实时在线诊断的需求,提出了一种基于增量式半监督多变量预测模型(Incremental Semi-supervised Variable Predictive Model based Class Discriminate,ISVPMCD)的齿轮故障在线检测方法。首先使用VPMCD方法给少量的已知样本建立初始预测模型,接着利用VPMCD方法中的判据给未标识样本赋予初始伪标识,然后通过互相关准则筛选出伪标识样本,最后利用伪标识样本和已知样本作为训练样本更新初始预测模型,使得更新的预测模型能兼顾整个样本集的信息,从而可以有效地解决小样本的故障诊断问题,另外,由于该方法在实时更新新样本的过程中不需要再次建立判别模型,从而缩短了分类时间,为实时在线诊断提供了新的思路。对UCI标准数据以及齿轮实测数据的分析结果表明,适合于小样本的ISVPMCD模式识别方法可以更快更准确地识别齿轮工作状态和故障类型。展开更多
基于变量预测模型的模式识别(Variable predictive model based class discriminate,简称VPMCD)方法在训练过程中是用多项式响应面(Polynomial Response Surface,简称PRS)法来建立预测模型的,然而PRS法的模型拟合精度不能随训练样本容...基于变量预测模型的模式识别(Variable predictive model based class discriminate,简称VPMCD)方法在训练过程中是用多项式响应面(Polynomial Response Surface,简称PRS)法来建立预测模型的,然而PRS法的模型拟合精度不能随训练样本容量的增加而显著提高。针对这一缺陷,将原方法中的PRS方法进行了改进,提出了基于改进多项式响应面(Improved Polynomial Response Surface,简称IPRS)的VPMCD方法,并将其应用于滚动轴承故障诊断。通过实验,将原方法和改进方法在训练样本容量不同情况下的模式分类精度进行对比,结果表明,相对于原VPMCD方法,改进的VPMCD方法不仅具有更好的模式分类效果,而且其分类精度随训练样本容量的增加提高得更明显。展开更多
针对VPMCD中模型选择方法的不合理和小样本多分类时识别率降低的缺陷,结合动态加速常数协同惯性权重的粒子群(Particle swarm optimization with dynamic accelerating constant and coordinating with inertia weight,PSODACCIW)算法...针对VPMCD中模型选择方法的不合理和小样本多分类时识别率降低的缺陷,结合动态加速常数协同惯性权重的粒子群(Particle swarm optimization with dynamic accelerating constant and coordinating with inertia weight,PSODACCIW)算法的全局优化能力和加权融合理论,提出基于PSODACCIW-VPMCD的滚动轴承智能检测方法。首先对样本提取特征变量,然后采用PSODACCIW算法优化诊断融合权值矩阵,最后对滚动轴承的故障类型和工作状态进行分类和识别。实验结果表明,该方法能够有效地应用于滚动轴承的智能检测中。展开更多
文摘提出了基于VPMCD(Variable Predictive Model Based Class Discriminate,简称VPMCD)和EMD(Empirical mode decomposition,简称EMD)的齿轮故障诊断方法,并将它应用于齿轮稳态信号的分析。VPMCD方法是一种新的模式识别方法,特别适合于非线性分类问题,它充分利用从原始数据中所提取的特征值之间的相互内在关系建立数学模型,从而进行模式识别。在基于VPMCD和EMD的齿轮故障诊断方法中,首先采用EMD方法将齿轮振动信号自适应地分解为若干个单分量信号,然后提取各个分量的样本熵并将其作为特征值,最后采用VPMCD分类器进行故障识别和分类。结果表明该方法能够有效地突出齿轮故障振动信号的故障特征,提高了齿轮故障诊断的准确性。
文摘基于变量预测模型的模式识别(variable predictive model based class discriminate,VPMCD)方法是一种充分利用特征值之间相互内在关系进行多分类模式识别的新方法。对VPMCD算法进行了研究,并采用交叉验证法来选择VPMCD模型。针对机械故障振动信号的特征值之间的相互内在关系,结合本征时间尺度分解(intrinsic time-scale decom-position,ITD),提出了一种基于本征时间尺度分解和VPMCD的机械故障诊断方法。该方法首先利用ITD方法将原始信号分解若干个PR(proper rotation,PR)分量,然后提取第一个PR分量的无量纲时域统计参数组成特征向量,最后采用VPMCD方法进行机械故障诊断。通过滚动轴承故障诊断实验验证了该方法能有效地应用于小样本多分类机械故障诊断。
文摘VPMCD(Variable Predictive Model Based Class Discriminate)是一种新的模式识别方法,它充分利用从原始数据中所提取的特征值之间的相互内在关系建立数学模型,从而进行模式识别。论文将VPMCD结合排列熵(Permutation Entropy,简称PE)方法应用于滚动轴承故障诊断。首先采用ITD(Intrinsic Time-scale Decomposition,简称ITD)对滚动轴承振动信号进行分解,得到若干个固有旋转(Proper Rotation)分量,并对包含主要故障信息的PR分量提取排列熵作为故障特征值;然后,对VPMCD分类器进行训练;最后,采用VPMCD分类器进行故障识别和分类。实验数据的分析结果表明该方法能够有效地应用于滚动轴承故障诊断。
文摘针对旋转机械故障诊断方法中信号处理和模式识别的不足,即端点效应和判别片面性问题,提出一种基于互相关匹配延拓局部特征尺度分解(Cross-correlation matching endpoint Extension Local Characteristic scale Decomposition,CELCD)和改进多变量预测模型(Variable Predictive Model based Class Discriminate,VPMCD)的智能故障诊断方法,首先探索待分解信号前后端的数据规律,选取匹配波形完成端点延拓,然后利用局部特征尺度分解(Local Characteristic scale Decomposition,LCD)得到各去除端点效应的内禀尺度分量(Intrinsic Scale Component,ISC),最后输入到基于多模型融合的多变量预测模型(Multi-model Fusion-Variable Predictive Model based Class Discriminate,MFVPMCD)分类器中进行概率状态判定.实验分析结果表明,所提方法能有效地对滚动轴承的工作状态进行识别.
文摘针对液压泵故障信号的非平稳特性以及其退化状态难以识别的问题,结合局部特征尺度分解与信息熵理论,提出了局部特征尺度分解谱熵的退化特征提取方法,并将基于变量预测模型的模式识别(Variable Predictive Model based Class Discriminate,VPMCD)方法引入到液压泵的退化状态识别。对不同程度故障的液压泵振动信号进行局部特征尺度分解,从得到的内禀尺度分量中提取振动信号的复杂度和随机性度量指标能谱熵、奇异谱熵和包络谱熵,以其作为液压泵的退化特征向量,通过建立VPMCD退化状态识别模型实现液压泵的退化状态识别。仿真信号分析结果验证了所提出的局部特征尺度分解谱熵具有较好的表征液压泵故障退化状态的能力。通过对实测液压泵松靴和滑靴磨损两种故障模式下的退化状态振动信号进行分析验证了提出方法的有效性。
文摘针对齿轮故障诊断中难以获得大量故障样本的问题及实时在线诊断的需求,提出了一种基于增量式半监督多变量预测模型(Incremental Semi-supervised Variable Predictive Model based Class Discriminate,ISVPMCD)的齿轮故障在线检测方法。首先使用VPMCD方法给少量的已知样本建立初始预测模型,接着利用VPMCD方法中的判据给未标识样本赋予初始伪标识,然后通过互相关准则筛选出伪标识样本,最后利用伪标识样本和已知样本作为训练样本更新初始预测模型,使得更新的预测模型能兼顾整个样本集的信息,从而可以有效地解决小样本的故障诊断问题,另外,由于该方法在实时更新新样本的过程中不需要再次建立判别模型,从而缩短了分类时间,为实时在线诊断提供了新的思路。对UCI标准数据以及齿轮实测数据的分析结果表明,适合于小样本的ISVPMCD模式识别方法可以更快更准确地识别齿轮工作状态和故障类型。
文摘基于变量预测模型的模式识别(Variable predictive model based class discriminate,简称VPMCD)方法在训练过程中是用多项式响应面(Polynomial Response Surface,简称PRS)法来建立预测模型的,然而PRS法的模型拟合精度不能随训练样本容量的增加而显著提高。针对这一缺陷,将原方法中的PRS方法进行了改进,提出了基于改进多项式响应面(Improved Polynomial Response Surface,简称IPRS)的VPMCD方法,并将其应用于滚动轴承故障诊断。通过实验,将原方法和改进方法在训练样本容量不同情况下的模式分类精度进行对比,结果表明,相对于原VPMCD方法,改进的VPMCD方法不仅具有更好的模式分类效果,而且其分类精度随训练样本容量的增加提高得更明显。
文摘针对VPMCD中模型选择方法的不合理和小样本多分类时识别率降低的缺陷,结合动态加速常数协同惯性权重的粒子群(Particle swarm optimization with dynamic accelerating constant and coordinating with inertia weight,PSODACCIW)算法的全局优化能力和加权融合理论,提出基于PSODACCIW-VPMCD的滚动轴承智能检测方法。首先对样本提取特征变量,然后采用PSODACCIW算法优化诊断融合权值矩阵,最后对滚动轴承的故障类型和工作状态进行分类和识别。实验结果表明,该方法能够有效地应用于滚动轴承的智能检测中。
文摘针对高压隔膜泵机械结构复杂,单向阀故障特征信息分布在多尺度上,单一尺度难以全面提取特征的问题,提出了一种基于参数优化变分模态分解(Variational Mode Decomposition,VMD)和增强多尺度排列熵(Enhanced Multi-scale Permutation Entropy,EMPE)的单向阀故障诊断方法。对单向阀振动信号进行VMD分解,以包络熵最小原则对其进行参数优化,获得既定的若干本征模态函数(Intrinsic Mode Function,IMF)分量;计算IMF分量的增强多尺度排列熵,构建故障特征值向量;利用基于变量预测模型的模式识别(Variable Predictive Model Based Class Discriminate,VPMCD)方法对故障特征值向量进行训练和识别,进而实现单向阀的故障诊断。仿真信号和工程实验分析表明,该方法可以准确地识别单向阀的故障类型,具有一定的可靠性和工程应用价值。