The vertical position of plasma in the HT-7U Tokamak is inherently unstable. In order to realize active stabilization, the response rate of the high-power high-frequency amplifier feeding the active control coils must...The vertical position of plasma in the HT-7U Tokamak is inherently unstable. In order to realize active stabilization, the response rate of the high-power high-frequency amplifier feeding the active control coils must be fast enough. This paper analyzes the paralleling scheme of the power amplifier through two kinds of control mode. One is the synchronous control; the other is the asynchronous control. Via the comparison of the two kinds of control mode, both of their characteristics are given in the text. At last, the analyzed result is verified by a small power experiment.展开更多
A novel path tracking controller for parallel parking based on active disturbance rejection control (ADRC) was presented in this paper. A second order ADRC controller was used to solve the path tracking robustness, ...A novel path tracking controller for parallel parking based on active disturbance rejection control (ADRC) was presented in this paper. A second order ADRC controller was used to solve the path tracking robustness, which can estimate and compensate model uncertainty caused by steering kinematics and disturbances caused by parking speed and steering system delay. Collision-free path planning technology was adopted to generate the reference path. The simulation results validate that the performance of the proposed path tracking controller is better than the conventional PID controller. The actual vehicle tests show that the proposed path tracking controller is effective and robust to model uncertainty and disturbances.展开更多
This paper presents a new three-level hierarchical control parallel algorithm for large-scale systems by spatial and time decomposition. The parallel variable metric (PVM)method is found to be promising third-level al...This paper presents a new three-level hierarchical control parallel algorithm for large-scale systems by spatial and time decomposition. The parallel variable metric (PVM)method is found to be promising third-level algorithm. In the subproblems of second-level, the constraints of the smaller subproblem requires that the initial state of a subproblem equals the terminal state of the preceding subproblem. The coordinating variables are updated using the modified Newton method. the low-level smaller subproblems are solved in parallel using extended differential dynamic programmeing (DDP). Numerical result shows that comparing with one level DDP. the PVM /DDP algorithm obtains significant speed-ups.展开更多
Based on the local resistance computation model for a choke valve and using the flow characteristics of choke valves, we studied the relationships between the back pressure of a parallel choke assembly and the opening...Based on the local resistance computation model for a choke valve and using the flow characteristics of choke valves, we studied the relationships between the back pressure of a parallel choke assembly and the opening extent of choke valves and developed a model to characterize the pressure regime of the manifold assembly. A comparison of pressure characteristic curves shows that a parallel choke manifold assembly has obvious advantages over the conventional serial type including high linearity of pressure-regulating characteristics curves, the elimination of the overshoot interval, wider effective regulating interval and the higher system security. Laboratory hydraulic experiments have validated the capability of a back pressure control model for the parallel choke assembly to accurately control pressure. This study is of great theoretical and practical significance to further improve the performance of chokes used in managed pressure well drilling.展开更多
This paper discusses a kind of implicit iterative methods with some variable parameters, which are called control parameters, for solving ill-posed operator equations. The theoretical results show that the new methods...This paper discusses a kind of implicit iterative methods with some variable parameters, which are called control parameters, for solving ill-posed operator equations. The theoretical results show that the new methods always lead to optimal convergence rates and have some other important features, especially the methods can be implemented parallelly.展开更多
A novel scalable architecture for coherent beam combining with hybrid phase control involving passive phasing and active phasing in master oscillator-power amplifier configuration is presented. Wide-linewidth mutually...A novel scalable architecture for coherent beam combining with hybrid phase control involving passive phasing and active phasing in master oscillator-power amplifier configuration is presented. Wide-linewidth mutually injected passive phasing fibre laser arrays serve as master oscillators for the power amplifiers, and the active phasing using stochastic parallel gradient descent algorithm is induced. Wide-linewidth seed laser can suppress the stimulated Brillouin scattering effectively and improve the output power of the fibre laser amplifier, while hybrid phase control provides a robust way for in-phase mode coherent beam combining simultaneously. Experiment is performed by active phasing fibre laser amplifiers with passive phasing fibre ring laser array seed lasers. Power encircled in the main-lobe increases1.57 times and long-exposure fringe contrast is obtained to be 78% when the system evolves from passive phasing to hybrid phasing.展开更多
Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Fi...Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Firstly taking advantage of simpleness of inverse kinematics, the forward kinematics is transformed to an optimal problem. Immune evolutionary algorithm is employed to find approximate solution of this optimal problem in manipulator's workspace. Then using above solution as iterative initialization, a speedy numerical iterative scheme is proposed to get more precise solution. In the manipulator running course, the iteration initialization can be selected as the last period position and orientation. Because the initialization is closed to correct solution, solving precision is high and speed is rapid enough to satisfy real-time requirement. This mixed forward kinematics algorithm is applied to real Stewart parallel manipulator in the real-time control course. The examination result shows that the algorithm is very efficient and practical.展开更多
基金The project supported by the National Meg-Science Engineering Project of Chinese Goverment
文摘The vertical position of plasma in the HT-7U Tokamak is inherently unstable. In order to realize active stabilization, the response rate of the high-power high-frequency amplifier feeding the active control coils must be fast enough. This paper analyzes the paralleling scheme of the power amplifier through two kinds of control mode. One is the synchronous control; the other is the asynchronous control. Via the comparison of the two kinds of control mode, both of their characteristics are given in the text. At last, the analyzed result is verified by a small power experiment.
基金Supported by the National Natural Science Foundation of China(11072106,51005133,51375009)
文摘A novel path tracking controller for parallel parking based on active disturbance rejection control (ADRC) was presented in this paper. A second order ADRC controller was used to solve the path tracking robustness, which can estimate and compensate model uncertainty caused by steering kinematics and disturbances caused by parking speed and steering system delay. Collision-free path planning technology was adopted to generate the reference path. The simulation results validate that the performance of the proposed path tracking controller is better than the conventional PID controller. The actual vehicle tests show that the proposed path tracking controller is effective and robust to model uncertainty and disturbances.
文摘This paper presents a new three-level hierarchical control parallel algorithm for large-scale systems by spatial and time decomposition. The parallel variable metric (PVM)method is found to be promising third-level algorithm. In the subproblems of second-level, the constraints of the smaller subproblem requires that the initial state of a subproblem equals the terminal state of the preceding subproblem. The coordinating variables are updated using the modified Newton method. the low-level smaller subproblems are solved in parallel using extended differential dynamic programmeing (DDP). Numerical result shows that comparing with one level DDP. the PVM /DDP algorithm obtains significant speed-ups.
基金supported by Important National Science & Technology Specific Projects (2008ZX05021-003)National Natural Science Funds (50974021)
文摘Based on the local resistance computation model for a choke valve and using the flow characteristics of choke valves, we studied the relationships between the back pressure of a parallel choke assembly and the opening extent of choke valves and developed a model to characterize the pressure regime of the manifold assembly. A comparison of pressure characteristic curves shows that a parallel choke manifold assembly has obvious advantages over the conventional serial type including high linearity of pressure-regulating characteristics curves, the elimination of the overshoot interval, wider effective regulating interval and the higher system security. Laboratory hydraulic experiments have validated the capability of a back pressure control model for the parallel choke assembly to accurately control pressure. This study is of great theoretical and practical significance to further improve the performance of chokes used in managed pressure well drilling.
基金This work was supported by the National Natural Science Foundation of China
文摘This paper discusses a kind of implicit iterative methods with some variable parameters, which are called control parameters, for solving ill-posed operator equations. The theoretical results show that the new methods always lead to optimal convergence rates and have some other important features, especially the methods can be implemented parallelly.
基金supported by the Innovation Foundation for Graduates in National University of Defense Technology,China (GrantNo.B080702)
文摘A novel scalable architecture for coherent beam combining with hybrid phase control involving passive phasing and active phasing in master oscillator-power amplifier configuration is presented. Wide-linewidth mutually injected passive phasing fibre laser arrays serve as master oscillators for the power amplifiers, and the active phasing using stochastic parallel gradient descent algorithm is induced. Wide-linewidth seed laser can suppress the stimulated Brillouin scattering effectively and improve the output power of the fibre laser amplifier, while hybrid phase control provides a robust way for in-phase mode coherent beam combining simultaneously. Experiment is performed by active phasing fibre laser amplifiers with passive phasing fibre ring laser array seed lasers. Power encircled in the main-lobe increases1.57 times and long-exposure fringe contrast is obtained to be 78% when the system evolves from passive phasing to hybrid phasing.
文摘Aimed at the real-time forward kinematics solving problem of Stewart parallel manipulator in the control course, a mixed algorithm combining immune evolutionary algorithm and numerical iterative scheme is proposed. Firstly taking advantage of simpleness of inverse kinematics, the forward kinematics is transformed to an optimal problem. Immune evolutionary algorithm is employed to find approximate solution of this optimal problem in manipulator's workspace. Then using above solution as iterative initialization, a speedy numerical iterative scheme is proposed to get more precise solution. In the manipulator running course, the iteration initialization can be selected as the last period position and orientation. Because the initialization is closed to correct solution, solving precision is high and speed is rapid enough to satisfy real-time requirement. This mixed forward kinematics algorithm is applied to real Stewart parallel manipulator in the real-time control course. The examination result shows that the algorithm is very efficient and practical.