A novel vacuum ice slurry producing system with jet-pumps was proposed to deal with the problems of high energy consumption and ice blockage.In this novel system,one steam driven by a jet-pump was used to create vacuu...A novel vacuum ice slurry producing system with jet-pumps was proposed to deal with the problems of high energy consumption and ice blockage.In this novel system,one steam driven by a jet-pump was used to create vacuum in a hermetic vessel where water was sprayed through a nozzle to produce ice slurry,while the other steam was used to provide enough cold energy to make the left vapor in the hermetic vessel condense.Mathematical models of this novel system were established and theoretical simulation on the performance characteristics was also implemented based on the MATLAB program.Results show that the novel system is feasible and practicable,and the system performance is affected by many factors,such as the temperature of the generators,condensing temperature,evaporation temperature,and the cooling load of the refrigerator sub-system.The findings are helpful to improve the performance of ice slurry producing system.展开更多
In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to...In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to reduce heat loss in buildings.Vacuum insulation panels(VIPs),a type of high-performance insulation material,have been increasingly utilised in the construction industry and have played an increa-singly important role as their performance and manufacturing processes continue to improve.This paper provides a review of the factors affecting the thermal conductivity of VIPs and presents a detailed overview of the research progress on core materials,barrier films,and getters.The current research status of VIPs is summarised,including their thermal conductivity,service life,and thermal bridging effects,as well as their applications in the field of architecture.This review aims to provide a comprehensive understanding for relevant practitioners on the factors influencing the thermal conductivity of VIPs,and based on which,measures can be taken to produce VIPs with lower thermal conductivity and longer service life.展开更多
We introduce our state-of-the art of“vacuum consistent electrochemistry”to an investigation of the interfaces between oxides and ionic liquid(IL).Pulsed laser deposition(PLD)has been one of the powerful and sophisti...We introduce our state-of-the art of“vacuum consistent electrochemistry”to an investigation of the interfaces between oxides and ionic liquid(IL).Pulsed laser deposition(PLD)has been one of the powerful and sophisticated techniques to realize nanoscale preparation of high-quality epitaxial oxide thin films.On the other hand,electrochemistry is a simple,very sensitive,and non-destructive analysis technique for solid-liquid interfaces.To ensure the reproducibility in experiment of the interfaces of such epitaxial oxide films,as well as bulk oxide single-crystals,with IL,we employ a home-built PLD-electrochemical(EC)system with IL as an electrolyte.The system allows one to perform all-in-vacuum experiments during the preparation of well-defined oxide electrode surfaces to their electrochemical analyses.The topics include electrochemical evaluations of the oxide’s own properties,such as carrier density and relative permittivity,and the interfacial properties of oxides in contact with IL,such as flat band potential and electric double layer(EDL)capacitance,ending with future perspectives in all-solid-state electrochemistry.展开更多
Concentrating sulfuric acid solution by vacuum membrane distillation with flat PEFE membrane is explored. The effects of sulfuric acid concentration, temperature of the feed, the vacuum degree of the vacuum side on th...Concentrating sulfuric acid solution by vacuum membrane distillation with flat PEFE membrane is explored. The effects of sulfuric acid concentration, temperature of the feed, the vacuum degree of the vacuum side on the flux of membrane distillation and the separation efficiency of acid are investigated. The results illustrate that the flux of the membrane distillation increases with the rise of feed temperature and the vacuum degree of the vacuum side, but it decreases with the rise of the sulfuric acid concentration of the feed. The separation efficiency of acid is correlated with the flux of membrane distillation; the separation efficiency of the acid can amount to 100% in the process, when operative conditions are properly controlled. It can also been obtained from the experiment that, compared with other methods of membrane distillation, the vacuum membrane distillation can obtain greater distillation flux.展开更多
To assess the effectiveness of vacuum preloading combined electroosmotic strengthening of ultra-soft soil and study the mechanism of the process, a comprehensive experimental investigation was performed. A laboratory ...To assess the effectiveness of vacuum preloading combined electroosmotic strengthening of ultra-soft soil and study the mechanism of the process, a comprehensive experimental investigation was performed. A laboratory test cell was designed and applied to evaluate the vacuum preloading combined electroosmosis. Several factors were taken into consideration, including the directions of the electroosmotic current and water induced by vacuum preloading and the replenishment of groundwater from the surrounding area. The results indicate that electroosmosis together with vacuum preloading improve the soil strength greatly, with an increase of approximately 60%, and reduce the water content of the soil on the basis of consolidation of vacuum preloading, howeve~ further settlement is not obvious with only 1.7 mm. The reinforcement effect of vacuum preloading combined electroosmosis is better than that of electroosmosis after vacuum preloading. Elemental analysis using X-ray fluorescence proves that the soil strengthening during electroosmotic period in this work is mainly caused by electroosmosis-induced electrochemical reactions, the concentrations of Al2O3 in the VPCEO region increase by 2.2%, 1.5%, and 0.9% at the anode, the midpoint between the electrodes, and the cathode, respectively.展开更多
Methyl isobutyl ketone(MIBK) is widely used as extraction agent in hydrometallurgy. As it has a definite solubility in water, so when using MIBK as extraction agent, there will be MIBK in stripping solutions inevitabl...Methyl isobutyl ketone(MIBK) is widely used as extraction agent in hydrometallurgy. As it has a definite solubility in water, so when using MIBK as extraction agent, there will be MIBK in stripping solutions inevitably, which not only pollutes working conditions, but also affects the quality of ultimate product. In order to remove MIBK from aqueous solutions, the means of flat vacuum membrane distillation(VMD) is studied in the paper. The area of the membrane used in the study is 0.02 m 2, the initial volume of feed is 2 L, each experiment was conducted over a time period of 60 120 min. The influences of the factors such as temperature(34.8 55.0 ℃); pressure in the permeate side(10.67 14.67 kPa) and feed flow rate(27.8 69.4 mL/s) were experimentally studied. Increasing the temperature or reducing the pressure in the permeate side results in a faster removal of MIBK; however there is a decrease in removal factor β , increasing the feed flow rate results in a faster removal of MIBK and an increase of removal factor β , especially in the range of lower flow rate. The study indicates that the aim of MIBK removal and recycle from dilute aqueous solutions can be achieved by VMD.展开更多
High purity (99.999% or 5N, mass fraction) indium (In) was obtained through vacuum distillation using a 2N (99%) In as input material under a dynamic vacuum of 5 Pa. The glow discharge mass spectrometry (GDMS)...High purity (99.999% or 5N, mass fraction) indium (In) was obtained through vacuum distillation using a 2N (99%) In as input material under a dynamic vacuum of 5 Pa. The glow discharge mass spectrometry (GDMS) was applied for the analysis of input material and the distilled indium. The results indicate that high-volatile impurities namely Cd, Zn, T1 and Pb can be removed from the indium matrix at the low fraction stage of 1 223 K for 120 min; Low-volatile impurities such as Fe, Ni, Cu, Sn can be reduced at the high fraction stage of 1 323 K for 120 min. The separation coefficient ,8i and activity coefficient Yi of impurities are calculated according to the experiments to fill the inadequate data of the thermodynamics.展开更多
The feasibility of separation of lead anode slime with low silver by vacuum distillation was analyzed theoretically. The volatilization rates and mass fractions of elements, influenced by distillation temperature, hea...The feasibility of separation of lead anode slime with low silver by vacuum distillation was analyzed theoretically. The volatilization rates and mass fractions of elements, influenced by distillation temperature, heat preservation time and material thickness, were investigated under laboratory conditions. The experimental results indicate that almost all of lead and bismuth can be separated from silver-contained multicomponent alloy at 1 223 K for 45 min when the chamber pressure maintains at 10-25 Pa. Silver can be easily enriched in the residue and its mass fraction increases from 3.6% to 27.8% when the distillation temperature is between 1 133 K and 1 373 K. Due to the forming ofintermetallic compounds Cu2Sb, Cul0Sb3 and Ag3Sb, the antimony could not be evaporated completely during the vacuum distillation. EDS analysis indicates that the condensate has a columnar crystal structure.展开更多
The preparation of activated carbon from Chinese fir sawdust by zinc chloride activation under both nitrogen atmosphere and vacuum conditions was carded out in a self-manufactured vacuum pyrolysis reactor. The effects...The preparation of activated carbon from Chinese fir sawdust by zinc chloride activation under both nitrogen atmosphere and vacuum conditions was carded out in a self-manufactured vacuum pyrolysis reactor. The effects of the system pressure and the activation condition (nitrogen or vacuum) on pore development were investigated. The results show that both high quality activated carbon and high added-value bio-oil can be obtained simultaneously via vacuum chemical activation. The characteristics of the activated carbons produced under vacuum conditions are better than those prepared under nitrogen atmosphere. The performance parameters of the activated carbon obtained under vacuum conditions are as follows: the pore size distribution is mainly microporous, the Brunauer-Emmett-Teller (BET) surface area is 1 070.59 m^2/g, the microporous volume is 0.502 4 cm^3/g, the average pore size is 2.085 nm, and the iodine adsorption value and the methylene blue adsorption value are 1 142.92 and 131.34 mg/g, respectively. The activated carbon from vacuum chemical activation has developed micropores, and the N2 adsorption equilibrium constant of the corresponding activated carbon gradually increases with the decrease of reaction system pressure.展开更多
Carbothermic reduction alumina in vacuum was conducted, and the products were analysed by means of XRD and gas chromatography. Thermodynamic analysis shows that in vacuum the initial carbothermic reduction reaction te...Carbothermic reduction alumina in vacuum was conducted, and the products were analysed by means of XRD and gas chromatography. Thermodynamic analysis shows that in vacuum the initial carbothermic reduction reaction temperature reduces compared with that under normal pressure, and the preferential order of products is Al404C, Al4C3, Al2OC, Al20 and A1. Experiment results show that the carbothermic reduction products of alumina are A1404C and A14C3, and neither A12OC, Al20 or Al was found. During the carbothermic reduction process, the reaction rate of Al203 and carbon decreases gradually with increasing time. Meanwhile, lower system pressure or higher temperature is beneficial to the carbothermic reduction of alumina process. A1404C is firstly formed in the carbothermic reaction, and then A14C3 is formed in lower system pressure or at higher temperature.展开更多
The catalytic activity of CoMoS /CNT towards the Egyptian heavy vacuum gas oil hydrotreating was studied. The delivered CNT was functionalized with 6 mol /L HNO_3. The CNT were loaded with 12% MoO_3( by weight) and 0....The catalytic activity of CoMoS /CNT towards the Egyptian heavy vacuum gas oil hydrotreating was studied. The delivered CNT was functionalized with 6 mol /L HNO_3. The CNT were loaded with 12% MoO_3( by weight) and 0.7 Co /Mo atomic ratio with impregnation methods. The γ-Al_2O_3 catalyst was also prepared by impregnation method to compare both catalysts activities.The analysis tools such XRD,Raman spectroscopy,TEM,and BET were used to characterize the catalysts. The autoclave reactor was used to operate the hydrotreating experiments. The hydrotreating reactions were tested at various operating conditions of temperature 325-375 ℃,pressure 2-6 MPa,time 2-6 h,and catalyst /oil ratio( by weight) of 1 ∶75,1 ∶33 and 1 ∶10. The results revealed that the CoMoS /CNT was highly efficient for the hydrotreating more than the CoMoS /γ-Al_2O_3. Also, the hydrodesulfurization( HDS) increased with increasing catalyst /oil ratio. Additionally,results showed that the optimum condition was temperature 350℃,pressure 4 MPa,catalyst /oil ratio of 1 ∶75 for 2 h. Furthermore,even at low CoMoS /CNT catalyst /oil ratio of 1 ∶75,an acceptable HDS of 77.1% was achieved.展开更多
The rapid development of high-speed transportation infrastructure such as highway and high-speed railway has resulted in the advancement of soft soil improvement techniques. Vacuum preloading combined with vertical dr...The rapid development of high-speed transportation infrastructure such as highway and high-speed railway has resulted in the advancement of soft soil improvement techniques. Vacuum preloading combined with vertical drains has been proved to be an effective method in the treatment of soft foundation. A three-dimensional numerical analysis of the coupled methods was presented, in which the smear zone and the well resistance were taken into account. The variations of the basic soil parameters including the permeability coefficient and the coefficient of volume compressibility were considered in the numerical model. The result of the numerical model was then compared to the measured value. The results indicate that the decrease of coefficient of volume compressibility accelerates the consolidation of the soil while the influence of hydraulic conductivity is insignificant. A cube drain presents the closest result to the real situation compared to the other equivalent methods of prefabricated vertical drain (PVD). The case study indicates that the numerical model with variation of soil parameters is closer to the measured value than the numerical model without variation of soil parameters.展开更多
Combining vacuum preloading technology and electroosmosis can improve the treatment effect of soft soil foundation by utilizing the advantages of both methods.Many studies indicate that the soil electrical potential i...Combining vacuum preloading technology and electroosmosis can improve the treatment effect of soft soil foundation by utilizing the advantages of both methods.Many studies indicate that the soil electrical potential is non-linearly distributed in the treatment process by the combined method.However,in the previous theoretical study,the non-linear-distribution impacts of soil’s electrical potential on soft soil foundation treatment have not been considered.It is always assumed to be linear distribution,which is different from the experimental results.In this paper,the coupling consolidation model of this technology under the two-dimensional plane strain condition is initially established;and the well resistance effect,the vacuum load decreasing along the soil depth and the non-linear variation of electrical potential in the soil are considered.Then,the analytical solutions of the average excess pore water pressure and soil’s consolidation degree in the anode affected area are acquired based on the soil’s electrical potential distribution.Finally,the rationality of the analytical solution is testified by conducting an experimental model test,which proves the scientificity of the analytical solution.The analytical solution is adopted to better predict the dissipation of excess pore water pressure and soil consolidation degree when using the combined technology.This study can provide a reference with more accuracy for the engineering practices of this combined technology in the future.展开更多
A stress relaxation test has been carried out for Hastelloy C-276 at temperature of 800 ~C and initial stress level of 250 MPa. Based on the experimental stress relaxation curve, the relationship between creep strain ...A stress relaxation test has been carried out for Hastelloy C-276 at temperature of 800 ~C and initial stress level of 250 MPa. Based on the experimental stress relaxation curve, the relationship between creep strain rate and stress has been derived. Then, a set of creep constitutive equations has been built and the values of constants arising in the constitutive equations have been determined by fitting the creep strain rate-stress curve. Close agreement between computed results and experimental ones is obtained for stress relaxation data. The creep constitutive equation set has been integrated with the commercial FE (finite element) solver MSC.Marc via the user defined subroutine, CRPLAW, for the vacuum hot bulge forming process modelling of Hastelloy C-276 thin-walled cylindrical workpiece. The temperature field, the radius-direction displacement field and the stress-strain field are calculated and analyzed. Furthermore, the bulging dimension and the final internal diameter of workpiece are predicted and the test results verify the reliability of the finite element method.展开更多
In order to study the temperature simulation of berry slices in microwave vacuum puffing process, numerical simulation method was used to simulate the temperature in different time according to theoretical calculation...In order to study the temperature simulation of berry slices in microwave vacuum puffing process, numerical simulation method was used to simulate the temperature in different time according to theoretical calculation result and the deviation had been verificated throughout the experiment. The better uniform of temperature between experiment and simulation could be concluded except in the period of rapid temperature increase. The temperature reached the high point of 130.25℃ in the middle point of slices at 100 s, while the temperature was over 50℃ in external parts of slices for the reason of thermal diffusion. Conclusions could be drawn that the model was effective and numerical analysis could simulate the temperature simulation for berry leather in microwave vacuum puffing process.展开更多
The laws of conservation of energy, linear momentum. and angular momentum of a system form a closed unit according to Noether's theorem. A generalization of these laws (including spin) for elementary par- ticles ...The laws of conservation of energy, linear momentum. and angular momentum of a system form a closed unit according to Noether's theorem. A generalization of these laws (including spin) for elementary par- ticles taking into account the states of negative energies of the Dirac vacuum is given. A new interpretation of the β-decay of nuclei without neutrinos. using interactions with Dirac's anti-world is discussed, which ex- plains all characteristics of the β-continuum. A quantum-electrodynamic theory of β-decay is presented in which Fermi's constant g of weak interactions is determined from first principles (without neutrinos). The lat- ter is an expression of e, h, c, m, M, and R, i.e., g is not an independent constant of physics nor is it necessa- ry to measure it.展开更多
The activity of components of Sn-Zn binary alloy system was predicted based on the molecular interaction volume model (MIVM). The calculated values are in good agreement with available experimental data of activitie...The activity of components of Sn-Zn binary alloy system was predicted based on the molecular interaction volume model (MIVM). The calculated values are in good agreement with available experimental data of activities, which indicates that this model is of stability and reliability because the MIVM has a good physical basis. The vapor-liquid phase equilibrium of Sn-Zn alloy system in vacuum distillation was calculated as a function of the activity coefficient. The results show that the content of Sn in vapor phase is 4.2x 10-7 (mass fraction) while in liquid phase it is 90% (mass fraction) at 1 073 K, and the content of Sn in vapor phase increases with increasing the melt temperature and content of Sn in liquid phase. Vacuum distillation experiments were carried out on Sn-Zn alloy for the proper interpretation of the results of the MIVM in the temperature range of 973-1 273 K under pressures of 15-200 Pa. The experimental results show that the content of Sn in vapor phase is 5x 10 6 (mass fraction) while in liquid phase it is 90% (mass fraction) under the operational condition of 1 073 K, 100 rain and 15 Pa. The experimental results are in good agreement with the predicted values of the MIVM for Zn-Sn binary alloy system.展开更多
The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditiona...The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditional routes of compositing are either inefficient and expensive or lead to a non-uniform distribution of ceramics in the matrix.Compared with the traditional C/C-ZrC-SiC composites prepared by the reactive melt infiltration of ZrSi_(2),C/C-ZrB_(2)-ZrC-SiC composites prepared by the vacuum infiltration of ZrB_(2) combined with reactive melt infiltration have the higher content and more uniform distribution of the introduced ceramic phases.The mass and linear ablation rates of the C/C-ZrB_(2)-ZrC-SiC composites were respectively 68.9%and 29.7%lower than those of C/C-ZrC-SiC composites prepared by reactive melt infiltration.The ablation performance was improved because the volatilization of B_(2)O_(3),removes some of the heat,and the more uniformly distributed ZrO_(2),that helps produce a ZrO2-SiO2 continu-ous protective layer,hinders oxygen infiltration and decreases ablation.展开更多
Friction and wear studies enable the investigation of material interaction between two sliding surfaces in contact. In the present investigation, the coefficient of friction and the wear resistance of AISI 316 L parts...Friction and wear studies enable the investigation of material interaction between two sliding surfaces in contact. In the present investigation, the coefficient of friction and the wear resistance of AISI 316 L parts were studied under self-mating, dry sliding conditions using a pin-on-disc type configuration. The experiments were conducted at vacuum based high temperature pin-on-disc tribometer. The 4 mm diameter pin and 180 mm diameter disc were subjected to varying sliding velocities(0.5, 0.75 and 1.5 m/s) and were operated in 200, 400, 500 and 580 ℃ temperature at 600 Torr vacuum. The variation of specific wear rates with sliding velocities and different environmental conditions was studied. The morphology of sliding/rubbed surfaces was observed using Scanning Electron Microscope. In summary, it was found that a severe to mild wear transition occurred in sliding under operating conditions. Increased wear rates have been observed for 500 and 580 ℃ with increasing sliding velocity. Adhesive wear has been found to be predominant at 500 and 580 ℃ where as de-lamination has been observed at ambient temperature,200 and 400 ℃ in vacuum. The present paper also carried out the numerical analysis of the vibration behavior of AISI 316 L under thermal environment. Results revealed that at high temperature vibrational amplitude and natural frequency is significantly reduced. This can be attributed to the reduction in stiffness of the material at elevated temperatures. This high amplitude vibration during service can lead to high wear rate.展开更多
基金Project(51376198)supported by the National Natural Science Foundation of ChinaProject(11JJ22029)supported by the Hunan Provincial Natural Science Foundation of China
文摘A novel vacuum ice slurry producing system with jet-pumps was proposed to deal with the problems of high energy consumption and ice blockage.In this novel system,one steam driven by a jet-pump was used to create vacuum in a hermetic vessel where water was sprayed through a nozzle to produce ice slurry,while the other steam was used to provide enough cold energy to make the left vapor in the hermetic vessel condense.Mathematical models of this novel system were established and theoretical simulation on the performance characteristics was also implemented based on the MATLAB program.Results show that the novel system is feasible and practicable,and the system performance is affected by many factors,such as the temperature of the generators,condensing temperature,evaporation temperature,and the cooling load of the refrigerator sub-system.The findings are helpful to improve the performance of ice slurry producing system.
文摘In recent years,there has been a growing global demand for carbon neutrality and energy efficiency,which are expected to become long-term trends.In the field of architecture,an effective approach to achieve this is to reduce heat loss in buildings.Vacuum insulation panels(VIPs),a type of high-performance insulation material,have been increasingly utilised in the construction industry and have played an increa-singly important role as their performance and manufacturing processes continue to improve.This paper provides a review of the factors affecting the thermal conductivity of VIPs and presents a detailed overview of the research progress on core materials,barrier films,and getters.The current research status of VIPs is summarised,including their thermal conductivity,service life,and thermal bridging effects,as well as their applications in the field of architecture.This review aims to provide a comprehensive understanding for relevant practitioners on the factors influencing the thermal conductivity of VIPs,and based on which,measures can be taken to produce VIPs with lower thermal conductivity and longer service life.
文摘We introduce our state-of-the art of“vacuum consistent electrochemistry”to an investigation of the interfaces between oxides and ionic liquid(IL).Pulsed laser deposition(PLD)has been one of the powerful and sophisticated techniques to realize nanoscale preparation of high-quality epitaxial oxide thin films.On the other hand,electrochemistry is a simple,very sensitive,and non-destructive analysis technique for solid-liquid interfaces.To ensure the reproducibility in experiment of the interfaces of such epitaxial oxide films,as well as bulk oxide single-crystals,with IL,we employ a home-built PLD-electrochemical(EC)system with IL as an electrolyte.The system allows one to perform all-in-vacuum experiments during the preparation of well-defined oxide electrode surfaces to their electrochemical analyses.The topics include electrochemical evaluations of the oxide’s own properties,such as carrier density and relative permittivity,and the interfacial properties of oxides in contact with IL,such as flat band potential and electric double layer(EDL)capacitance,ending with future perspectives in all-solid-state electrochemistry.
文摘Concentrating sulfuric acid solution by vacuum membrane distillation with flat PEFE membrane is explored. The effects of sulfuric acid concentration, temperature of the feed, the vacuum degree of the vacuum side on the flux of membrane distillation and the separation efficiency of acid are investigated. The results illustrate that the flux of the membrane distillation increases with the rise of feed temperature and the vacuum degree of the vacuum side, but it decreases with the rise of the sulfuric acid concentration of the feed. The separation efficiency of acid is correlated with the flux of membrane distillation; the separation efficiency of the acid can amount to 100% in the process, when operative conditions are properly controlled. It can also been obtained from the experiment that, compared with other methods of membrane distillation, the vacuum membrane distillation can obtain greater distillation flux.
基金Project(2009B13014) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(IRT1125) supported by the Program for Changjiang Scholars and Innovative Research Team in University,China
文摘To assess the effectiveness of vacuum preloading combined electroosmotic strengthening of ultra-soft soil and study the mechanism of the process, a comprehensive experimental investigation was performed. A laboratory test cell was designed and applied to evaluate the vacuum preloading combined electroosmosis. Several factors were taken into consideration, including the directions of the electroosmotic current and water induced by vacuum preloading and the replenishment of groundwater from the surrounding area. The results indicate that electroosmosis together with vacuum preloading improve the soil strength greatly, with an increase of approximately 60%, and reduce the water content of the soil on the basis of consolidation of vacuum preloading, howeve~ further settlement is not obvious with only 1.7 mm. The reinforcement effect of vacuum preloading combined electroosmosis is better than that of electroosmosis after vacuum preloading. Elemental analysis using X-ray fluorescence proves that the soil strengthening during electroosmotic period in this work is mainly caused by electroosmosis-induced electrochemical reactions, the concentrations of Al2O3 in the VPCEO region increase by 2.2%, 1.5%, and 0.9% at the anode, the midpoint between the electrodes, and the cathode, respectively.
文摘Methyl isobutyl ketone(MIBK) is widely used as extraction agent in hydrometallurgy. As it has a definite solubility in water, so when using MIBK as extraction agent, there will be MIBK in stripping solutions inevitably, which not only pollutes working conditions, but also affects the quality of ultimate product. In order to remove MIBK from aqueous solutions, the means of flat vacuum membrane distillation(VMD) is studied in the paper. The area of the membrane used in the study is 0.02 m 2, the initial volume of feed is 2 L, each experiment was conducted over a time period of 60 120 min. The influences of the factors such as temperature(34.8 55.0 ℃); pressure in the permeate side(10.67 14.67 kPa) and feed flow rate(27.8 69.4 mL/s) were experimentally studied. Increasing the temperature or reducing the pressure in the permeate side results in a faster removal of MIBK; however there is a decrease in removal factor β , increasing the feed flow rate results in a faster removal of MIBK and an increase of removal factor β , especially in the range of lower flow rate. The study indicates that the aim of MIBK removal and recycle from dilute aqueous solutions can be achieved by VMD.
基金Project(2009AA003) supported by Science and Technology Innovation Plan of Yunnan Province, China
文摘High purity (99.999% or 5N, mass fraction) indium (In) was obtained through vacuum distillation using a 2N (99%) In as input material under a dynamic vacuum of 5 Pa. The glow discharge mass spectrometry (GDMS) was applied for the analysis of input material and the distilled indium. The results indicate that high-volatile impurities namely Cd, Zn, T1 and Pb can be removed from the indium matrix at the low fraction stage of 1 223 K for 120 min; Low-volatile impurities such as Fe, Ni, Cu, Sn can be reduced at the high fraction stage of 1 323 K for 120 min. The separation coefficient ,8i and activity coefficient Yi of impurities are calculated according to the experiments to fill the inadequate data of the thermodynamics.
基金Project(2010CI009) supported by Science Foundation of Yunnan Province,ChinaProjects(U1202271) supported by the National Natural Science Foundation of China
文摘The feasibility of separation of lead anode slime with low silver by vacuum distillation was analyzed theoretically. The volatilization rates and mass fractions of elements, influenced by distillation temperature, heat preservation time and material thickness, were investigated under laboratory conditions. The experimental results indicate that almost all of lead and bismuth can be separated from silver-contained multicomponent alloy at 1 223 K for 45 min when the chamber pressure maintains at 10-25 Pa. Silver can be easily enriched in the residue and its mass fraction increases from 3.6% to 27.8% when the distillation temperature is between 1 133 K and 1 373 K. Due to the forming ofintermetallic compounds Cu2Sb, Cul0Sb3 and Ag3Sb, the antimony could not be evaporated completely during the vacuum distillation. EDS analysis indicates that the condensate has a columnar crystal structure.
文摘The preparation of activated carbon from Chinese fir sawdust by zinc chloride activation under both nitrogen atmosphere and vacuum conditions was carded out in a self-manufactured vacuum pyrolysis reactor. The effects of the system pressure and the activation condition (nitrogen or vacuum) on pore development were investigated. The results show that both high quality activated carbon and high added-value bio-oil can be obtained simultaneously via vacuum chemical activation. The characteristics of the activated carbons produced under vacuum conditions are better than those prepared under nitrogen atmosphere. The performance parameters of the activated carbon obtained under vacuum conditions are as follows: the pore size distribution is mainly microporous, the Brunauer-Emmett-Teller (BET) surface area is 1 070.59 m^2/g, the microporous volume is 0.502 4 cm^3/g, the average pore size is 2.085 nm, and the iodine adsorption value and the methylene blue adsorption value are 1 142.92 and 131.34 mg/g, respectively. The activated carbon from vacuum chemical activation has developed micropores, and the N2 adsorption equilibrium constant of the corresponding activated carbon gradually increases with the decrease of reaction system pressure.
基金Project(U0837604) supported by the Natural Science Foundation of Yunnan Province,ChinaProject(Jinchuan 201114) supported by the Pre Research Foundation of Jinchuan Group Ltd.,ChinaProject(2011148) supported by the Analysis and Testing Funds of Kunming University of Science and Technology,China
文摘Carbothermic reduction alumina in vacuum was conducted, and the products were analysed by means of XRD and gas chromatography. Thermodynamic analysis shows that in vacuum the initial carbothermic reduction reaction temperature reduces compared with that under normal pressure, and the preferential order of products is Al404C, Al4C3, Al2OC, Al20 and A1. Experiment results show that the carbothermic reduction products of alumina are A1404C and A14C3, and neither A12OC, Al20 or Al was found. During the carbothermic reduction process, the reaction rate of Al203 and carbon decreases gradually with increasing time. Meanwhile, lower system pressure or higher temperature is beneficial to the carbothermic reduction of alumina process. A1404C is firstly formed in the carbothermic reaction, and then A14C3 is formed in lower system pressure or at higher temperature.
文摘The catalytic activity of CoMoS /CNT towards the Egyptian heavy vacuum gas oil hydrotreating was studied. The delivered CNT was functionalized with 6 mol /L HNO_3. The CNT were loaded with 12% MoO_3( by weight) and 0.7 Co /Mo atomic ratio with impregnation methods. The γ-Al_2O_3 catalyst was also prepared by impregnation method to compare both catalysts activities.The analysis tools such XRD,Raman spectroscopy,TEM,and BET were used to characterize the catalysts. The autoclave reactor was used to operate the hydrotreating experiments. The hydrotreating reactions were tested at various operating conditions of temperature 325-375 ℃,pressure 2-6 MPa,time 2-6 h,and catalyst /oil ratio( by weight) of 1 ∶75,1 ∶33 and 1 ∶10. The results revealed that the CoMoS /CNT was highly efficient for the hydrotreating more than the CoMoS /γ-Al_2O_3. Also, the hydrodesulfurization( HDS) increased with increasing catalyst /oil ratio. Additionally,results showed that the optimum condition was temperature 350℃,pressure 4 MPa,catalyst /oil ratio of 1 ∶75 for 2 h. Furthermore,even at low CoMoS /CNT catalyst /oil ratio of 1 ∶75,an acceptable HDS of 77.1% was achieved.
基金Project(2010THZ021)supported by Tsinghua University,ChinaProject(50978139)supported by the National Natural Science Foundation of ChinaProject(2012CB719804)supported by the National Basic Research Program of China
文摘The rapid development of high-speed transportation infrastructure such as highway and high-speed railway has resulted in the advancement of soft soil improvement techniques. Vacuum preloading combined with vertical drains has been proved to be an effective method in the treatment of soft foundation. A three-dimensional numerical analysis of the coupled methods was presented, in which the smear zone and the well resistance were taken into account. The variations of the basic soil parameters including the permeability coefficient and the coefficient of volume compressibility were considered in the numerical model. The result of the numerical model was then compared to the measured value. The results indicate that the decrease of coefficient of volume compressibility accelerates the consolidation of the soil while the influence of hydraulic conductivity is insignificant. A cube drain presents the closest result to the real situation compared to the other equivalent methods of prefabricated vertical drain (PVD). The case study indicates that the numerical model with variation of soil parameters is closer to the measured value than the numerical model without variation of soil parameters.
基金Project(51979087)supported by the National Natural Science Foundation of ChinaProject(BK20180776)supported by the Jiangsu Natural Science Foundation,ChinaProject(202006710002)supported by the China Scholarship Council。
文摘Combining vacuum preloading technology and electroosmosis can improve the treatment effect of soft soil foundation by utilizing the advantages of both methods.Many studies indicate that the soil electrical potential is non-linearly distributed in the treatment process by the combined method.However,in the previous theoretical study,the non-linear-distribution impacts of soil’s electrical potential on soft soil foundation treatment have not been considered.It is always assumed to be linear distribution,which is different from the experimental results.In this paper,the coupling consolidation model of this technology under the two-dimensional plane strain condition is initially established;and the well resistance effect,the vacuum load decreasing along the soil depth and the non-linear variation of electrical potential in the soil are considered.Then,the analytical solutions of the average excess pore water pressure and soil’s consolidation degree in the anode affected area are acquired based on the soil’s electrical potential distribution.Finally,the rationality of the analytical solution is testified by conducting an experimental model test,which proves the scientificity of the analytical solution.The analytical solution is adopted to better predict the dissipation of excess pore water pressure and soil consolidation degree when using the combined technology.This study can provide a reference with more accuracy for the engineering practices of this combined technology in the future.
基金Project(2009CB724307)supported by the Major State Basic Research Development Program(973 Program)of China
文摘A stress relaxation test has been carried out for Hastelloy C-276 at temperature of 800 ~C and initial stress level of 250 MPa. Based on the experimental stress relaxation curve, the relationship between creep strain rate and stress has been derived. Then, a set of creep constitutive equations has been built and the values of constants arising in the constitutive equations have been determined by fitting the creep strain rate-stress curve. Close agreement between computed results and experimental ones is obtained for stress relaxation data. The creep constitutive equation set has been integrated with the commercial FE (finite element) solver MSC.Marc via the user defined subroutine, CRPLAW, for the vacuum hot bulge forming process modelling of Hastelloy C-276 thin-walled cylindrical workpiece. The temperature field, the radius-direction displacement field and the stress-strain field are calculated and analyzed. Furthermore, the bulging dimension and the final internal diameter of workpiece are predicted and the test results verify the reliability of the finite element method.
基金Supported by the Key Project of Education Department of Heilongjiang Province of China (12521z003)the National Natural Science Foundation of China (31071579)the Key Program of the Natural Science Foundation of Heilongjiang Province of China (ZD201013)
文摘In order to study the temperature simulation of berry slices in microwave vacuum puffing process, numerical simulation method was used to simulate the temperature in different time according to theoretical calculation result and the deviation had been verificated throughout the experiment. The better uniform of temperature between experiment and simulation could be concluded except in the period of rapid temperature increase. The temperature reached the high point of 130.25℃ in the middle point of slices at 100 s, while the temperature was over 50℃ in external parts of slices for the reason of thermal diffusion. Conclusions could be drawn that the model was effective and numerical analysis could simulate the temperature simulation for berry leather in microwave vacuum puffing process.
文摘The laws of conservation of energy, linear momentum. and angular momentum of a system form a closed unit according to Noether's theorem. A generalization of these laws (including spin) for elementary par- ticles taking into account the states of negative energies of the Dirac vacuum is given. A new interpretation of the β-decay of nuclei without neutrinos. using interactions with Dirac's anti-world is discussed, which ex- plains all characteristics of the β-continuum. A quantum-electrodynamic theory of β-decay is presented in which Fermi's constant g of weak interactions is determined from first principles (without neutrinos). The lat- ter is an expression of e, h, c, m, M, and R, i.e., g is not an independent constant of physics nor is it necessa- ry to measure it.
基金Project(2012CB722803) supported by the Key Project of National Basic Research and Development Program of ChinaProject(2011FA008)supported by the Key Project of Science and Technology Program of Yunnan Province,China
文摘The activity of components of Sn-Zn binary alloy system was predicted based on the molecular interaction volume model (MIVM). The calculated values are in good agreement with available experimental data of activities, which indicates that this model is of stability and reliability because the MIVM has a good physical basis. The vapor-liquid phase equilibrium of Sn-Zn alloy system in vacuum distillation was calculated as a function of the activity coefficient. The results show that the content of Sn in vapor phase is 4.2x 10-7 (mass fraction) while in liquid phase it is 90% (mass fraction) at 1 073 K, and the content of Sn in vapor phase increases with increasing the melt temperature and content of Sn in liquid phase. Vacuum distillation experiments were carried out on Sn-Zn alloy for the proper interpretation of the results of the MIVM in the temperature range of 973-1 273 K under pressures of 15-200 Pa. The experimental results show that the content of Sn in vapor phase is 5x 10 6 (mass fraction) while in liquid phase it is 90% (mass fraction) under the operational condition of 1 073 K, 100 rain and 15 Pa. The experimental results are in good agreement with the predicted values of the MIVM for Zn-Sn binary alloy system.
文摘The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditional routes of compositing are either inefficient and expensive or lead to a non-uniform distribution of ceramics in the matrix.Compared with the traditional C/C-ZrC-SiC composites prepared by the reactive melt infiltration of ZrSi_(2),C/C-ZrB_(2)-ZrC-SiC composites prepared by the vacuum infiltration of ZrB_(2) combined with reactive melt infiltration have the higher content and more uniform distribution of the introduced ceramic phases.The mass and linear ablation rates of the C/C-ZrB_(2)-ZrC-SiC composites were respectively 68.9%and 29.7%lower than those of C/C-ZrC-SiC composites prepared by reactive melt infiltration.The ablation performance was improved because the volatilization of B_(2)O_(3),removes some of the heat,and the more uniformly distributed ZrO_(2),that helps produce a ZrO2-SiO2 continu-ous protective layer,hinders oxygen infiltration and decreases ablation.
文摘Friction and wear studies enable the investigation of material interaction between two sliding surfaces in contact. In the present investigation, the coefficient of friction and the wear resistance of AISI 316 L parts were studied under self-mating, dry sliding conditions using a pin-on-disc type configuration. The experiments were conducted at vacuum based high temperature pin-on-disc tribometer. The 4 mm diameter pin and 180 mm diameter disc were subjected to varying sliding velocities(0.5, 0.75 and 1.5 m/s) and were operated in 200, 400, 500 and 580 ℃ temperature at 600 Torr vacuum. The variation of specific wear rates with sliding velocities and different environmental conditions was studied. The morphology of sliding/rubbed surfaces was observed using Scanning Electron Microscope. In summary, it was found that a severe to mild wear transition occurred in sliding under operating conditions. Increased wear rates have been observed for 500 and 580 ℃ with increasing sliding velocity. Adhesive wear has been found to be predominant at 500 and 580 ℃ where as de-lamination has been observed at ambient temperature,200 and 400 ℃ in vacuum. The present paper also carried out the numerical analysis of the vibration behavior of AISI 316 L under thermal environment. Results revealed that at high temperature vibrational amplitude and natural frequency is significantly reduced. This can be attributed to the reduction in stiffness of the material at elevated temperatures. This high amplitude vibration during service can lead to high wear rate.