One-year-old seedlings of Amur maple (Acer ginnala Maxim), Ussurian pear (Pyrus ussuriensis Maxim) and David peach (Prunus davidiana Carr) were planted in pots in greenhouse and treated with four different soil moistu...One-year-old seedlings of Amur maple (Acer ginnala Maxim), Ussurian pear (Pyrus ussuriensis Maxim) and David peach (Prunus davidiana Carr) were planted in pots in greenhouse and treated with four different soil moisture contents (75.0%, 61.1%, 46.4% and 35.4%). The results showed that net photosynthesis rate (NPR), transpiration rate (TR) and stomatal conductance (Sc) of seedlings of the three species decreased with the decease of soil moisture content, and Amur maple seedlings had the greatest change in those physiological indices, followed by Ussurian pear, David peach. Amur maple and Ussurian pear seedlings also presented a decrease tendency in water use efficiency (WUE) under lower soil moisture content, whereas this was reversed for David peach. Under water stress the biomass allocation to seedling root had a significant increase for all the experimental species. As to root/shoot ratio, Amur maple seedlings had the biggest increase, while David peach had the smallest increase. The leaf plasticity of Amur maple seedlings was greater, the leaf size and total leaf area decreased significantly as the stress was intensified. No significant change of leaf size and total leaf area was found in seedlings of Ussurian pear and David peach. It was concluded that Amur maple was more tolerant to soil moisture stress in comparison with David peach and Ussurian pear.展开更多
The selection of drought-tolerant plants is an important aspect of plant breeding.We studied physiological and biochemical mechanisms of different ploidies of Populus ussuriensis Kom.that relate to drought stress tole...The selection of drought-tolerant plants is an important aspect of plant breeding.We studied physiological and biochemical mechanisms of different ploidies of Populus ussuriensis Kom.that relate to drought stress tolerance.We used a 5%(v/v)polyethylene glycol(PEG-6000)solution to simulate drought stress.We recorded leaf phenotypes including color,dry area and curl degree.We evaluated sequential variations in some drought stress tolerance-related physiological and biochemical indices and compared these among diploid clones(CK),triploid clones(T12)and tetraploid clones(F20).T12 leaves exhibited slightly more drought stress damage than CK and F20 leaves.CK leaves suffered the most severe drought stress damage.The physiological and biochemical indices of the different ploidies differed significantly 12 days after drought stress treatment.The activities of superoxide dismutase,peroxidase,catalase and proline in the triploid(T12)leaves were the highest.The relative electric conductivity and malondialdehyde content of T12 leaves were the lowest.The index values of F20 were between those ofthe diploid and triploid.In consideration of these results,the drought resistance of the three different ploidies of P.ussuriensis can be ranked as T12>F20>CK.We speculate that the gene expression patterns of polyploid clones of poplar will change after genome doubling and that some of the drought stress tolerance-related physiological and biochemical indices will be improved,resulting in greater drought tolerance of polyploid clones.展开更多
Dry seeds of Populus ussuriensis collected from Heilongjiang area were carried by the recoverable satellite for mutagenesis.Then the growth traits and antioxidant enzymes activities of seedlings from the spaceflight-t...Dry seeds of Populus ussuriensis collected from Heilongjiang area were carried by the recoverable satellite for mutagenesis.Then the growth traits and antioxidant enzymes activities of seedlings from the spaceflight-treated seeds and controls were analyzed.The results showed that the growth traits of the seedlings after spaceflight varied to some degree,but most of the variation was not remarkable.There were no significant changes in soluble protein content,malondialdehyde(MDA)content and superoxide dismutase(SOD)activity in seedlings with response to spaceflight treatment.However,activities of ascorbate peroxidase(APX)and guaiacol peroxidase(POD)in the poplar seedlings after spaceflight were significantly higher than those from the ground control.It suggested that space condition altered the poplar traits in some degree,and the higher antioxidant enzymes might failitate themselves to avoid some damage from active oxygen.展开更多
基金This study was supported by Science and Technology Program of Heilongjiang Province (GC01KB213), and the Quick Response of Basic Research Supporting Program (2001CCB00600)
文摘One-year-old seedlings of Amur maple (Acer ginnala Maxim), Ussurian pear (Pyrus ussuriensis Maxim) and David peach (Prunus davidiana Carr) were planted in pots in greenhouse and treated with four different soil moisture contents (75.0%, 61.1%, 46.4% and 35.4%). The results showed that net photosynthesis rate (NPR), transpiration rate (TR) and stomatal conductance (Sc) of seedlings of the three species decreased with the decease of soil moisture content, and Amur maple seedlings had the greatest change in those physiological indices, followed by Ussurian pear, David peach. Amur maple and Ussurian pear seedlings also presented a decrease tendency in water use efficiency (WUE) under lower soil moisture content, whereas this was reversed for David peach. Under water stress the biomass allocation to seedling root had a significant increase for all the experimental species. As to root/shoot ratio, Amur maple seedlings had the biggest increase, while David peach had the smallest increase. The leaf plasticity of Amur maple seedlings was greater, the leaf size and total leaf area decreased significantly as the stress was intensified. No significant change of leaf size and total leaf area was found in seedlings of Ussurian pear and David peach. It was concluded that Amur maple was more tolerant to soil moisture stress in comparison with David peach and Ussurian pear.
基金supported by the National Key R&D Program of China(Grant No.2016YFD0600404)
文摘The selection of drought-tolerant plants is an important aspect of plant breeding.We studied physiological and biochemical mechanisms of different ploidies of Populus ussuriensis Kom.that relate to drought stress tolerance.We used a 5%(v/v)polyethylene glycol(PEG-6000)solution to simulate drought stress.We recorded leaf phenotypes including color,dry area and curl degree.We evaluated sequential variations in some drought stress tolerance-related physiological and biochemical indices and compared these among diploid clones(CK),triploid clones(T12)and tetraploid clones(F20).T12 leaves exhibited slightly more drought stress damage than CK and F20 leaves.CK leaves suffered the most severe drought stress damage.The physiological and biochemical indices of the different ploidies differed significantly 12 days after drought stress treatment.The activities of superoxide dismutase,peroxidase,catalase and proline in the triploid(T12)leaves were the highest.The relative electric conductivity and malondialdehyde content of T12 leaves were the lowest.The index values of F20 were between those ofthe diploid and triploid.In consideration of these results,the drought resistance of the three different ploidies of P.ussuriensis can be ranked as T12>F20>CK.We speculate that the gene expression patterns of polyploid clones of poplar will change after genome doubling and that some of the drought stress tolerance-related physiological and biochemical indices will be improved,resulting in greater drought tolerance of polyploid clones.
文摘Dry seeds of Populus ussuriensis collected from Heilongjiang area were carried by the recoverable satellite for mutagenesis.Then the growth traits and antioxidant enzymes activities of seedlings from the spaceflight-treated seeds and controls were analyzed.The results showed that the growth traits of the seedlings after spaceflight varied to some degree,but most of the variation was not remarkable.There were no significant changes in soluble protein content,malondialdehyde(MDA)content and superoxide dismutase(SOD)activity in seedlings with response to spaceflight treatment.However,activities of ascorbate peroxidase(APX)and guaiacol peroxidase(POD)in the poplar seedlings after spaceflight were significantly higher than those from the ground control.It suggested that space condition altered the poplar traits in some degree,and the higher antioxidant enzymes might failitate themselves to avoid some damage from active oxygen.