A hierarchical structural decomposition analysis(SDA) model has been developed based on process-level input-output(I-O) tables to analyze the drivers of energy consumption changes in an integrated steel plant during 2...A hierarchical structural decomposition analysis(SDA) model has been developed based on process-level input-output(I-O) tables to analyze the drivers of energy consumption changes in an integrated steel plant during 2011-2013. By combining the principle of hierarchical decomposition into D&L method, a hierarchical decomposition model for multilevel SDA is obtained. The developed hierarchical IO-SDA model would provide consistent results and need less computation effort compared with the traditional SDA model. The decomposition results of the steel plant suggest that the technology improvement and reduced steel final demand are two major reasons for declined total energy consumption. The technical improvements of blast furnaces, basic oxygen furnaces, the power plant and the by-products utilization level have contributed mostly in reducing energy consumption. A major retrofit of ancillary process units and solving fuel substitution problem in the sinter plant and blast furnace are important for further energy saving. Besides the empirical results, this work also discussed that why and how hierarchical SDA can be applied in a process-level decomposition analysis of aggregated indicators.展开更多
With the dramatic development of renewable energy all over the world,and for purpose of adjusting energy structure,the Ministry of Construction of China plans to promote the large scale application of renewable energy...With the dramatic development of renewable energy all over the world,and for purpose of adjusting energy structure,the Ministry of Construction of China plans to promote the large scale application of renewable energy in buildings. In order to ensure the validity of policy-making,this work firstly exerts a method to do cost-benefit analysis for three kinds of technologies such as building-integrated solar hot water (BISHW) system,building-integrated photovoltaic (BIPV) technology and ground water heat pump (GWHP). Through selecting a representative city of every climate region,the analysis comes into different results for different climate regions in China and respectively different suggestion for policy-making. On the analysis basis,the Ministry of Construction (MOC) and the Ministry of Finance of China (MOF) united to start-up Building-integrated Renewable Energy Demonstration Projects (BIREDP) in 2006. In the demonstration projects,renewable energy takes place of traditional energy to supply the domestic hot water,electricity,air-conditioning and heating. Through carrying out the demonstration projects,renewable energy related market has been expanded. More and more relative companies and local governments take the opportunity to promote the large scale application of renewable energy in buildings.展开更多
该文将Energy Plus建筑能耗仿真与实际被动式建筑现场调研、能耗监测相结合,以青岛地区某被动房为案例,开展了包括现场调研、仿真结果验证、节能潜力分析和敏感性分析等内容的实验项目。实验结果表明,该实验方法可操作性强,仿真结果与...该文将Energy Plus建筑能耗仿真与实际被动式建筑现场调研、能耗监测相结合,以青岛地区某被动房为案例,开展了包括现场调研、仿真结果验证、节能潜力分析和敏感性分析等内容的实验项目。实验结果表明,该实验方法可操作性强,仿真结果与实测数据吻合度高,被动式建筑的节能效果得到有效验证。案例被动式建筑全供暖及供冷能耗指标分别为14.08 k Wh/m^(2)·a和8.37 k Wh/m^(2)·a,相比传统建筑全年节能55.26%,其中空调节能率高达56.95%;外墙、外窗保温、遮阳系统等被动措施是主要节能来源,节能占比分别为26.54%、23.58%和23.97%;灰色关联分析显示,外墙传热系数对全年能耗的敏感度最高。展开更多
随着我国能源结构转型持续演进,能源革命持续深化,综合能源服务成为实现能效提升和绿色发展的有效途径,而智慧运维服务则是落实综合能源服务理念,达到安全、智慧、高效用能的重要实现手段。分析综合能源系统智慧运维(Intelligent operat...随着我国能源结构转型持续演进,能源革命持续深化,综合能源服务成为实现能效提升和绿色发展的有效途径,而智慧运维服务则是落实综合能源服务理念,达到安全、智慧、高效用能的重要实现手段。分析综合能源系统智慧运维(Intelligent operation and maintenance of integrated energy system,IES-IOM)的特点,从人工运维、自动化运维和智慧运维三个阶段阐述了其发展历程;基于IES-IOM的数据情况,提出智慧运维关键核心技术;构建IES-IOM服务业务体系,包括运维知识库建立、设备状态评估、设备状态预测、设备故障诊断和运维策略推荐;围绕商业楼宇、工业园区两大典型综合能源系统应用场景,分析智慧运维服务业务的应用效果。最后,提出IES-IOM面临的挑战,并展望未来发展方向,以期对深入理解和推动IES-IOM的发展提供理论支撑。展开更多
基金Project(2012GK2025)supported by Science-Technology Plan Foundation of Hunan Province,ChinaProject(2013zzts039)supported by the Fundamental Research Funds for Central South University,China
文摘A hierarchical structural decomposition analysis(SDA) model has been developed based on process-level input-output(I-O) tables to analyze the drivers of energy consumption changes in an integrated steel plant during 2011-2013. By combining the principle of hierarchical decomposition into D&L method, a hierarchical decomposition model for multilevel SDA is obtained. The developed hierarchical IO-SDA model would provide consistent results and need less computation effort compared with the traditional SDA model. The decomposition results of the steel plant suggest that the technology improvement and reduced steel final demand are two major reasons for declined total energy consumption. The technical improvements of blast furnaces, basic oxygen furnaces, the power plant and the by-products utilization level have contributed mostly in reducing energy consumption. A major retrofit of ancillary process units and solving fuel substitution problem in the sinter plant and blast furnace are important for further energy saving. Besides the empirical results, this work also discussed that why and how hierarchical SDA can be applied in a process-level decomposition analysis of aggregated indicators.
文摘With the dramatic development of renewable energy all over the world,and for purpose of adjusting energy structure,the Ministry of Construction of China plans to promote the large scale application of renewable energy in buildings. In order to ensure the validity of policy-making,this work firstly exerts a method to do cost-benefit analysis for three kinds of technologies such as building-integrated solar hot water (BISHW) system,building-integrated photovoltaic (BIPV) technology and ground water heat pump (GWHP). Through selecting a representative city of every climate region,the analysis comes into different results for different climate regions in China and respectively different suggestion for policy-making. On the analysis basis,the Ministry of Construction (MOC) and the Ministry of Finance of China (MOF) united to start-up Building-integrated Renewable Energy Demonstration Projects (BIREDP) in 2006. In the demonstration projects,renewable energy takes place of traditional energy to supply the domestic hot water,electricity,air-conditioning and heating. Through carrying out the demonstration projects,renewable energy related market has been expanded. More and more relative companies and local governments take the opportunity to promote the large scale application of renewable energy in buildings.
文摘该文将Energy Plus建筑能耗仿真与实际被动式建筑现场调研、能耗监测相结合,以青岛地区某被动房为案例,开展了包括现场调研、仿真结果验证、节能潜力分析和敏感性分析等内容的实验项目。实验结果表明,该实验方法可操作性强,仿真结果与实测数据吻合度高,被动式建筑的节能效果得到有效验证。案例被动式建筑全供暖及供冷能耗指标分别为14.08 k Wh/m^(2)·a和8.37 k Wh/m^(2)·a,相比传统建筑全年节能55.26%,其中空调节能率高达56.95%;外墙、外窗保温、遮阳系统等被动措施是主要节能来源,节能占比分别为26.54%、23.58%和23.97%;灰色关联分析显示,外墙传热系数对全年能耗的敏感度最高。
文摘随着我国能源结构转型持续演进,能源革命持续深化,综合能源服务成为实现能效提升和绿色发展的有效途径,而智慧运维服务则是落实综合能源服务理念,达到安全、智慧、高效用能的重要实现手段。分析综合能源系统智慧运维(Intelligent operation and maintenance of integrated energy system,IES-IOM)的特点,从人工运维、自动化运维和智慧运维三个阶段阐述了其发展历程;基于IES-IOM的数据情况,提出智慧运维关键核心技术;构建IES-IOM服务业务体系,包括运维知识库建立、设备状态评估、设备状态预测、设备故障诊断和运维策略推荐;围绕商业楼宇、工业园区两大典型综合能源系统应用场景,分析智慧运维服务业务的应用效果。最后,提出IES-IOM面临的挑战,并展望未来发展方向,以期对深入理解和推动IES-IOM的发展提供理论支撑。