Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network cap...Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network capacity degradations. In this paper, a mixed stochastic user equilibrium model was proposed to describe the interactive route choice behaviors between ATIS equipped and unequipped drivers on a degradable transport network. In the proposed model the information accessibility of equipped drivers was reflected by lower degree of uncertainty in their stochastic equilibrium flow distributions, and their behavioral adaptability was captured by multiple equilibrium behaviors over the stochastic network state set. The mixed equilibrium model was formulated as a fixed point problem defined in the mixed route flows, and its solution was achieved by executing an iterative algorithm. Numerical experiments were provided to verify the properties of the mixed network equilibrium model and the efficiency of the iterative algorithm.展开更多
With the rapid development of big data,online education can use big data technology to achieve personalized and intelligent education as well as improve learning effect and user satisfaction.In this study,the users of...With the rapid development of big data,online education can use big data technology to achieve personalized and intelligent education as well as improve learning effect and user satisfaction.In this study,the users of The Open University of China online education platform were taken as the research object,their user behavior data was collected,cleaned,and analyzed with text mining.The RFM model and the improved K-Means algorithm were used to construct the user portrait of the platform group and the needs and preferences of different types of the users were analyzded.Chinese word segmentation was used to show the key words of different types of users and the word cloud of their using frequency.The focus of different user groups was determined to facilitate for the follow-up course recommendation and precision marketing.Experimental results showed that the improved K-Means algorithm can well depict the behavior of group users.The index of silhouette score was improved to 0.811 by the improved K-Means algorithm,from random uncertainty to a fixed value,which can effectively solve the problem of inconsistent results caused by outlier sample points.展开更多
随着定位技术和传感器的高速发展,用户移动轨迹数据日渐丰富,但大多分散在不同平台上。为了全面利用这些数据并准确反映用户的真实行为,对轨迹用户匹配的研究变得至关重要。该任务旨在从海量签到轨迹数据中精准关联用户身份。近年来,研...随着定位技术和传感器的高速发展,用户移动轨迹数据日渐丰富,但大多分散在不同平台上。为了全面利用这些数据并准确反映用户的真实行为,对轨迹用户匹配的研究变得至关重要。该任务旨在从海量签到轨迹数据中精准关联用户身份。近年来,研究者们尝试运用循环神经网络、注意力机制等方法深入挖掘轨迹数据。然而,当前方法在处理用户签到轨迹时面临两大挑战:一是签到数据中有限的时空特征不足以从主观和客观两个角度全面地建模签到点信息,二是用户的签到轨迹往往围绕着一个特定的主题。针对这两点挑战,提出了一种基于自然语言增强的轨迹用户匹配模型(Natural Language Augmented Trajectory User Link,NLATUL)。首先,设计了一套自然语言模板与软提示令牌来描述签到轨迹,并使用语言模型来理解签到点中的主观意图,融合用户的时空状态,提供了一种充分从主观与客观两个方面建模签到点的方法;在此基础上,通过提示学习的方法推理签到轨迹的主题,并对建模的签到点表示的轨迹进行双向编码,通过签到轨迹主题与签到轨迹编码的结合实现对用户签到轨迹的准确理解。在两个真实世界签到数据集上验证的实验结果表明,NLATUL能够更准确地匹配签到轨迹与其对应的用户。展开更多
基金Projects(51378119,51578150)supported by the National Natural Science Foundation of China
文摘Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network capacity degradations. In this paper, a mixed stochastic user equilibrium model was proposed to describe the interactive route choice behaviors between ATIS equipped and unequipped drivers on a degradable transport network. In the proposed model the information accessibility of equipped drivers was reflected by lower degree of uncertainty in their stochastic equilibrium flow distributions, and their behavioral adaptability was captured by multiple equilibrium behaviors over the stochastic network state set. The mixed equilibrium model was formulated as a fixed point problem defined in the mixed route flows, and its solution was achieved by executing an iterative algorithm. Numerical experiments were provided to verify the properties of the mixed network equilibrium model and the efficiency of the iterative algorithm.
文摘With the rapid development of big data,online education can use big data technology to achieve personalized and intelligent education as well as improve learning effect and user satisfaction.In this study,the users of The Open University of China online education platform were taken as the research object,their user behavior data was collected,cleaned,and analyzed with text mining.The RFM model and the improved K-Means algorithm were used to construct the user portrait of the platform group and the needs and preferences of different types of the users were analyzded.Chinese word segmentation was used to show the key words of different types of users and the word cloud of their using frequency.The focus of different user groups was determined to facilitate for the follow-up course recommendation and precision marketing.Experimental results showed that the improved K-Means algorithm can well depict the behavior of group users.The index of silhouette score was improved to 0.811 by the improved K-Means algorithm,from random uncertainty to a fixed value,which can effectively solve the problem of inconsistent results caused by outlier sample points.
文摘随着定位技术和传感器的高速发展,用户移动轨迹数据日渐丰富,但大多分散在不同平台上。为了全面利用这些数据并准确反映用户的真实行为,对轨迹用户匹配的研究变得至关重要。该任务旨在从海量签到轨迹数据中精准关联用户身份。近年来,研究者们尝试运用循环神经网络、注意力机制等方法深入挖掘轨迹数据。然而,当前方法在处理用户签到轨迹时面临两大挑战:一是签到数据中有限的时空特征不足以从主观和客观两个角度全面地建模签到点信息,二是用户的签到轨迹往往围绕着一个特定的主题。针对这两点挑战,提出了一种基于自然语言增强的轨迹用户匹配模型(Natural Language Augmented Trajectory User Link,NLATUL)。首先,设计了一套自然语言模板与软提示令牌来描述签到轨迹,并使用语言模型来理解签到点中的主观意图,融合用户的时空状态,提供了一种充分从主观与客观两个方面建模签到点的方法;在此基础上,通过提示学习的方法推理签到轨迹的主题,并对建模的签到点表示的轨迹进行双向编码,通过签到轨迹主题与签到轨迹编码的结合实现对用户签到轨迹的准确理解。在两个真实世界签到数据集上验证的实验结果表明,NLATUL能够更准确地匹配签到轨迹与其对应的用户。