Using the existing positioning technology can easily obtain high-precision positioning information,which can save resources and reduce complexity when used in the communication field.In this paper,we propose a locatio...Using the existing positioning technology can easily obtain high-precision positioning information,which can save resources and reduce complexity when used in the communication field.In this paper,we propose a location-based user scheduling and beamforming scheme for the downlink of a massive multi-user input-output system.Specifically,we combine an analog outer beamformer with a digital inner beamformer.An outer beamformer can be selected from a codebook formed by antenna steering vectors,and then a reduced-complexity inner beamformer based on iterative orthogonal matrices and right triangular matrices(QR)decomposition is applied to cancel interuser interference.Then,we propose a low-complexity user selection algorithm using location information in this paper.We first derive the geometric angle between channel matrices,which represent the correlation between users.Furthermore,we derive the asymptotic signal to interference-plus-noise ratio(SINR)of the system in the context of two-stage beamforming using random matrix theory(RMT),taking into account inter-channel correlations and energies.Simulation results show that the algorithm can achieve higher system and speed while reducing computational complexity.展开更多
With the arrival of the big data era,the phenomenon of information overload is becoming increasingly severe.In response to the common issue of sparse user rating matrices in recommendation systems,a collaborative filt...With the arrival of the big data era,the phenomenon of information overload is becoming increasingly severe.In response to the common issue of sparse user rating matrices in recommendation systems,a collaborative filtering recommendation algorithm was proposed based on improved user profiles in this study.Firstly,a profile labeling system was constructed based on user characteristics.This study proposed that user profile labels should be created using basic user information and basic item information,in order to construct multidimensional user profiles.TF-IDF algorithm was used to determine the weights of user-item feature labels.Secondly,user similarity was calculated by weighting both profile-based collaborative filtering and user-based collaborative filtering algorithms,and the final user similarity was obtained by harmonizing these weights.Finally,personalized recommendations were generated using Top-N method.Validation with the MovieLens-1M dataset revealed that this algorithm enhances both recommendation Precision and Recall compared to single-method approaches(recommendation algorithm based on user portrait and user-based collaborative filtering algorithm).展开更多
In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interact...In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interaction design mode used is still mainly based on the interaction mode for young groups,and is not designed for elderly users.Therefore,a design method for optimizing the interaction interface of live broadcasting platform for elderly users was proposed in this study.Firstly,the case study method and Delphi expert survey method were used to determine the design needs of elderly users and the design mode was analysed.Secondly,the orthogonal design principle was used to design a test sample of the interactive interface of live broadcasting platform applicable for the elderly users,and then a user evaluation system was established to calculate the weights of the design elements using hierarchical analysis,and then the predictive relationship between the design mode of the interactive interface of live broadcasting platform and the elderly users was established by Quantitative Theory I.Finally,Genetic Algorithm was applied to generate the optimized design scheme.The results showed that the design method based on the Genetic Algorithm and the combination of Quantitative Theory can scientifically and effectively optimize the design of the interactive interface of the live broadcasting platform for the elderly users,and improve the experience of the elderly users.展开更多
In the context of big data, many large-scale knowledge graphs have emerged to effectively organize the explosive growth of web data on the Internet. To select suitable knowledge graphs for use from many knowledge grap...In the context of big data, many large-scale knowledge graphs have emerged to effectively organize the explosive growth of web data on the Internet. To select suitable knowledge graphs for use from many knowledge graphs, quality assessment is particularly important. As an important thing of quality assessment, completeness assessment generally refers to the ratio of the current data volume to the total data volume.When evaluating the completeness of a knowledge graph, it is often necessary to refine the completeness dimension by setting different completeness metrics to produce more complete and understandable evaluation results for the knowledge graph.However, lack of awareness of requirements is the most problematic quality issue. In the actual evaluation process, the existing completeness metrics need to consider the actual application. Therefore, to accurately recommend suitable knowledge graphs to many users, it is particularly important to develop relevant measurement metrics and formulate measurement schemes for completeness. In this paper, we will first clarify the concept of completeness, establish each metric of completeness, and finally design a measurement proposal for the completeness of knowledge graphs.展开更多
In the data-driven era of the internet and business environments,constructing accurate user profiles is paramount for personalized user understanding and classification.The traditional TF-IDF algorithm has some limita...In the data-driven era of the internet and business environments,constructing accurate user profiles is paramount for personalized user understanding and classification.The traditional TF-IDF algorithm has some limitations when evaluating the impact of words on classification results.Consequently,an improved TF-IDF-K algorithm was introduced in this study,which included an equalization factor,aimed at constructing user profiles by processing and analyzing user search records.Through the training and prediction capabilities of a Support Vector Machine(SVM),it enabled the prediction of user demographic attributes.The experimental results demonstrated that the TF-IDF-K algorithm has achieved a significant improvement in classification accuracy and reliability.展开更多
With the rapid development of big data,online education can use big data technology to achieve personalized and intelligent education as well as improve learning effect and user satisfaction.In this study,the users of...With the rapid development of big data,online education can use big data technology to achieve personalized and intelligent education as well as improve learning effect and user satisfaction.In this study,the users of The Open University of China online education platform were taken as the research object,their user behavior data was collected,cleaned,and analyzed with text mining.The RFM model and the improved K-Means algorithm were used to construct the user portrait of the platform group and the needs and preferences of different types of the users were analyzded.Chinese word segmentation was used to show the key words of different types of users and the word cloud of their using frequency.The focus of different user groups was determined to facilitate for the follow-up course recommendation and precision marketing.Experimental results showed that the improved K-Means algorithm can well depict the behavior of group users.The index of silhouette score was improved to 0.811 by the improved K-Means algorithm,from random uncertainty to a fixed value,which can effectively solve the problem of inconsistent results caused by outlier sample points.展开更多
Many digital platforms have employed free-content promotion strategies to deal with the high uncertainty levels regarding digital content products.However,the diversity of digital content products and user heterogenei...Many digital platforms have employed free-content promotion strategies to deal with the high uncertainty levels regarding digital content products.However,the diversity of digital content products and user heterogeneity in content preference may blur the impact of platform promotions across users and products.Therefore,free-content promotion strategies should be adapted to allocate marketing resources optimally and increase revenue.This study develops personal-ized free-content promotion strategies based on individual-level heterogeneous treatment effects and explores the causes of their heterogeneity,focusing on the moderating effect of user engagement-related variables.To this end,we utilize ran-dom field experimental data provided by a top Chinese e-book platform.We employ a framework that combines machine learning with econometric causal inference methods to estimate individual treatment effects and analyze their potential mechanisms.The analysis shows that,on average,free-content promotions lead to a significant increase in consumer pay-ments.However,the higher the level of user engagement,the lower the payment lift caused by promotions,as more-engaged users are more strongly affected by the cannibalization effect of free-content promotion.This study introduces a novel causal research design to help platforms improve their marketing strategies.展开更多
The paper presents a design method that ensures the ingenuity of the product form as well as the whole and exact expression of user’s needs. The key idea is to establish an automatic design system which can transform...The paper presents a design method that ensures the ingenuity of the product form as well as the whole and exact expression of user’s needs. The key idea is to establish an automatic design system which can transform the user’s language needs into the product features in real-time. A rifle was taken as a research instance and soldiers were chosen as evaluation customers. The theory of fuzzy set and semantic difference are adopted to evaluate the relationship between user’s needs and product features as well as their alternatives. FAHP (fuzzy analytic hierarchy process) is utilized to judge the user’s satisfactory forms. This method can also be applied to other product form designs.展开更多
The assumption widely used in the user equilibrium model for stochastic network was that the probability distributions of the travel time were known explicitly by travelers. However, this distribution may be unavailab...The assumption widely used in the user equilibrium model for stochastic network was that the probability distributions of the travel time were known explicitly by travelers. However, this distribution may be unavailable in reality. By relaxing the restrictive assumption, a robust user equilibrium model based on cumulative prospect theory under distribution-free travel time was presented. In the absence of the cumulative distribution function of the travel time, the exact cumulative prospect value(CPV) for each route cannot be obtained. However, the upper and lower bounds on the CPV can be calculated by probability inequalities.Travelers were assumed to choose the routes with the best worst-case CPVs. The proposed model was formulated as a variational inequality problem and solved via a heuristic solution algorithm. A numerical example was also provided to illustrate the application of the proposed model and the efficiency of the solution algorithm.展开更多
The violation of monotonicity on reliability measures(RMs)usually makes the mathematical programming algorithms less efficient in solving the reliability-based user equilibrium(RUE)problem.The swapping algorithms prov...The violation of monotonicity on reliability measures(RMs)usually makes the mathematical programming algorithms less efficient in solving the reliability-based user equilibrium(RUE)problem.The swapping algorithms provide a simple and convenient alternative to search traffic equilibrium since they are derivative-free and require weaker monotonicity.However,the existing swapping algorithms are usually based on linear swapping processes which cannot naturally avoid overswapping,and the step-size parameter update methods do not take the swapping feature into account.In this paper,we suggest a self-regulating pairwise swapping algorithm(SRPSA)to search RUE.SRPSA comprises an RM-based pairwise swapping process(RMPSP),a parameter self-diminishing operator and a termination criterion.SRPSA does not need to check the feasibility of either solutions or step-size parameter.It is suggested from the numerical analyses that SRPSA is effective and can swap to the quasi-RUE very fast.Therefore,SRPSA offers a good approach to generate initial points for those superior local search algorithms.展开更多
To work efficiently with DSS, most users need assistance in representation conversion, i. e., translating the specific outcome from the DSS into the universal language of visual. In generally, it is much easier to und...To work efficiently with DSS, most users need assistance in representation conversion, i. e., translating the specific outcome from the DSS into the universal language of visual. In generally, it is much easier to understand the results from the DSS if they are translated into charts, maps, and other scientific displays, because visualization exploits human natural ability to recognize and understand visual pattern. In this paper we discuss the concept of visualization for DSS. AniGraftool, a software system, is introduced as an example of Visualized User Interface for DSS.展开更多
Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network cap...Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network capacity degradations. In this paper, a mixed stochastic user equilibrium model was proposed to describe the interactive route choice behaviors between ATIS equipped and unequipped drivers on a degradable transport network. In the proposed model the information accessibility of equipped drivers was reflected by lower degree of uncertainty in their stochastic equilibrium flow distributions, and their behavioral adaptability was captured by multiple equilibrium behaviors over the stochastic network state set. The mixed equilibrium model was formulated as a fixed point problem defined in the mixed route flows, and its solution was achieved by executing an iterative algorithm. Numerical experiments were provided to verify the properties of the mixed network equilibrium model and the efficiency of the iterative algorithm.展开更多
The cloud computing has been growing over the past few years, and service providers are creating an intense competitive world of business. This proliferation makes it hard for new users to select a proper service amon...The cloud computing has been growing over the past few years, and service providers are creating an intense competitive world of business. This proliferation makes it hard for new users to select a proper service among a large amount of service candidates. A novel user preferences-aware recommendation approach for trustworthy services is presented. For describing the requirements of new users in different application scenarios, user preferences are identified by usage preference, trust preference and cost preference. According to the similarity analysis of usage preference between consumers and new users, the candidates are selected, and these data about service trust provided by them are calculated as the fuzzy comprehensive evaluations. In accordance with the trust and cost preferences of new users, the dynamic fuzzy clusters are generated based on the fuzzy similarity computation. Then, the most suitable services can be selected to recommend to new users. The experiments show that this approach is effective and feasible, and can improve the quality of services recommendation meeting the requirements of new users in different scenario.展开更多
The cumulative prospect theory(CPT) is applied to study travelers' route choice behavior in a degradable transport network. A cumulative prospect theory-based user equilibrium(CPT-UE) model considering stochastic ...The cumulative prospect theory(CPT) is applied to study travelers' route choice behavior in a degradable transport network. A cumulative prospect theory-based user equilibrium(CPT-UE) model considering stochastic perception error(SPE) within travelers' route choice decision process is developed. The SPE is conditionally dependent on the actual travel time distribution, which is different from the deterministic perception error used in the traditional logit-based stochastic user equilibrium. The CPT-UE model is formulated as a variational inequality problem and solved by a heuristic solution algorithm. Numerical examples are provided to illustrate the application of the proposed model and efficiency of the solution algorithm. The effects of SPE on the reference point determination, cumulative prospect value estimation, route choice decision and network performance evaluation are investigated.展开更多
Traffic assignment has been recognized as one of the key technologies in supporting transportation planning and operations.To better address the perfectly rational issue of the expected utility theory(EUT)and the over...Traffic assignment has been recognized as one of the key technologies in supporting transportation planning and operations.To better address the perfectly rational issue of the expected utility theory(EUT)and the overlapping path issue of the multinomial logit(MNL)model that are involved in the traffic assignment process,this paper proposes a cumulative prospect value(CPV)-based generalized nested logit(GNL)stochastic user equilibrium(SUE)model.The proposed model uses CPV to replace the utility value as the path performance within the GNL model framework.An equivalent mathematical model is provided for the proposed CPV-based GNL SUE model,which is solved by the method of successive averages(MSA).The existence and equivalence of the solution are also proved for the equivalent model.To demonstrate the performance of the proposed CPV-based GNL SUE model,three road networks are selected in the empirical test.The results show that the proposed model can jointly deal with the perfectly rational issue and the overlapping path issue,and additionally,the proposed model is shown to be applicable for large road networks.展开更多
Pilot contamination can spoil the accuracy of channel estimation and then has become one of the key problems influencing the performance of massive multiple input multiple output(MIMO)systems.This paper proposes a met...Pilot contamination can spoil the accuracy of channel estimation and then has become one of the key problems influencing the performance of massive multiple input multiple output(MIMO)systems.This paper proposes a method based on cell classification and users grouping to mitigate the pilot contamination in multi-cell massive MIMO systems and improve the spectral efficiency.The pilots of the terminals are allocated onebit orthogonal identifier to diminish the cell categories by the operation of exclusive OR(XOR).At the same time,the users are divided into edge user groups and central user groups according to the large-scale fading coefficients by the clustering algorithm,and different pilot sequences are assigned to different groups.The simulation results show that the proposed method can effectively improve the spectral efficiency of multi-cell massive MIMO systems.展开更多
基金supported by the National Natural Science Foundation of China(61901341).
文摘Using the existing positioning technology can easily obtain high-precision positioning information,which can save resources and reduce complexity when used in the communication field.In this paper,we propose a location-based user scheduling and beamforming scheme for the downlink of a massive multi-user input-output system.Specifically,we combine an analog outer beamformer with a digital inner beamformer.An outer beamformer can be selected from a codebook formed by antenna steering vectors,and then a reduced-complexity inner beamformer based on iterative orthogonal matrices and right triangular matrices(QR)decomposition is applied to cancel interuser interference.Then,we propose a low-complexity user selection algorithm using location information in this paper.We first derive the geometric angle between channel matrices,which represent the correlation between users.Furthermore,we derive the asymptotic signal to interference-plus-noise ratio(SINR)of the system in the context of two-stage beamforming using random matrix theory(RMT),taking into account inter-channel correlations and energies.Simulation results show that the algorithm can achieve higher system and speed while reducing computational complexity.
文摘With the arrival of the big data era,the phenomenon of information overload is becoming increasingly severe.In response to the common issue of sparse user rating matrices in recommendation systems,a collaborative filtering recommendation algorithm was proposed based on improved user profiles in this study.Firstly,a profile labeling system was constructed based on user characteristics.This study proposed that user profile labels should be created using basic user information and basic item information,in order to construct multidimensional user profiles.TF-IDF algorithm was used to determine the weights of user-item feature labels.Secondly,user similarity was calculated by weighting both profile-based collaborative filtering and user-based collaborative filtering algorithms,and the final user similarity was obtained by harmonizing these weights.Finally,personalized recommendations were generated using Top-N method.Validation with the MovieLens-1M dataset revealed that this algorithm enhances both recommendation Precision and Recall compared to single-method approaches(recommendation algorithm based on user portrait and user-based collaborative filtering algorithm).
文摘In the era of network live broadcasting for everyone,the development of live broadcasting platforms is also more intelligent and diversified.However,in the face of a large group of elderly users,the interface interaction design mode used is still mainly based on the interaction mode for young groups,and is not designed for elderly users.Therefore,a design method for optimizing the interaction interface of live broadcasting platform for elderly users was proposed in this study.Firstly,the case study method and Delphi expert survey method were used to determine the design needs of elderly users and the design mode was analysed.Secondly,the orthogonal design principle was used to design a test sample of the interactive interface of live broadcasting platform applicable for the elderly users,and then a user evaluation system was established to calculate the weights of the design elements using hierarchical analysis,and then the predictive relationship between the design mode of the interactive interface of live broadcasting platform and the elderly users was established by Quantitative Theory I.Finally,Genetic Algorithm was applied to generate the optimized design scheme.The results showed that the design method based on the Genetic Algorithm and the combination of Quantitative Theory can scientifically and effectively optimize the design of the interactive interface of the live broadcasting platform for the elderly users,and improve the experience of the elderly users.
基金supported by the National Key Laboratory for Comp lex Systems Simulation Foundation (6142006190301)。
文摘In the context of big data, many large-scale knowledge graphs have emerged to effectively organize the explosive growth of web data on the Internet. To select suitable knowledge graphs for use from many knowledge graphs, quality assessment is particularly important. As an important thing of quality assessment, completeness assessment generally refers to the ratio of the current data volume to the total data volume.When evaluating the completeness of a knowledge graph, it is often necessary to refine the completeness dimension by setting different completeness metrics to produce more complete and understandable evaluation results for the knowledge graph.However, lack of awareness of requirements is the most problematic quality issue. In the actual evaluation process, the existing completeness metrics need to consider the actual application. Therefore, to accurately recommend suitable knowledge graphs to many users, it is particularly important to develop relevant measurement metrics and formulate measurement schemes for completeness. In this paper, we will first clarify the concept of completeness, establish each metric of completeness, and finally design a measurement proposal for the completeness of knowledge graphs.
文摘In the data-driven era of the internet and business environments,constructing accurate user profiles is paramount for personalized user understanding and classification.The traditional TF-IDF algorithm has some limitations when evaluating the impact of words on classification results.Consequently,an improved TF-IDF-K algorithm was introduced in this study,which included an equalization factor,aimed at constructing user profiles by processing and analyzing user search records.Through the training and prediction capabilities of a Support Vector Machine(SVM),it enabled the prediction of user demographic attributes.The experimental results demonstrated that the TF-IDF-K algorithm has achieved a significant improvement in classification accuracy and reliability.
文摘With the rapid development of big data,online education can use big data technology to achieve personalized and intelligent education as well as improve learning effect and user satisfaction.In this study,the users of The Open University of China online education platform were taken as the research object,their user behavior data was collected,cleaned,and analyzed with text mining.The RFM model and the improved K-Means algorithm were used to construct the user portrait of the platform group and the needs and preferences of different types of the users were analyzded.Chinese word segmentation was used to show the key words of different types of users and the word cloud of their using frequency.The focus of different user groups was determined to facilitate for the follow-up course recommendation and precision marketing.Experimental results showed that the improved K-Means algorithm can well depict the behavior of group users.The index of silhouette score was improved to 0.811 by the improved K-Means algorithm,from random uncertainty to a fixed value,which can effectively solve the problem of inconsistent results caused by outlier sample points.
基金supported by the Anhui Postdoctoral Scientific Research Program Foundation(2022B579).
文摘Many digital platforms have employed free-content promotion strategies to deal with the high uncertainty levels regarding digital content products.However,the diversity of digital content products and user heterogeneity in content preference may blur the impact of platform promotions across users and products.Therefore,free-content promotion strategies should be adapted to allocate marketing resources optimally and increase revenue.This study develops personal-ized free-content promotion strategies based on individual-level heterogeneous treatment effects and explores the causes of their heterogeneity,focusing on the moderating effect of user engagement-related variables.To this end,we utilize ran-dom field experimental data provided by a top Chinese e-book platform.We employ a framework that combines machine learning with econometric causal inference methods to estimate individual treatment effects and analyze their potential mechanisms.The analysis shows that,on average,free-content promotions lead to a significant increase in consumer pay-ments.However,the higher the level of user engagement,the lower the payment lift caused by promotions,as more-engaged users are more strongly affected by the cannibalization effect of free-content promotion.This study introduces a novel causal research design to help platforms improve their marketing strategies.
文摘The paper presents a design method that ensures the ingenuity of the product form as well as the whole and exact expression of user’s needs. The key idea is to establish an automatic design system which can transform the user’s language needs into the product features in real-time. A rifle was taken as a research instance and soldiers were chosen as evaluation customers. The theory of fuzzy set and semantic difference are adopted to evaluate the relationship between user’s needs and product features as well as their alternatives. FAHP (fuzzy analytic hierarchy process) is utilized to judge the user’s satisfactory forms. This method can also be applied to other product form designs.
基金Project(2012CB725400)supported by the National Basic Research Program of ChinaProjects(71271023,71322102,7121001)supported by the National Natural Science Foundation of China
文摘The assumption widely used in the user equilibrium model for stochastic network was that the probability distributions of the travel time were known explicitly by travelers. However, this distribution may be unavailable in reality. By relaxing the restrictive assumption, a robust user equilibrium model based on cumulative prospect theory under distribution-free travel time was presented. In the absence of the cumulative distribution function of the travel time, the exact cumulative prospect value(CPV) for each route cannot be obtained. However, the upper and lower bounds on the CPV can be calculated by probability inequalities.Travelers were assumed to choose the routes with the best worst-case CPVs. The proposed model was formulated as a variational inequality problem and solved via a heuristic solution algorithm. A numerical example was also provided to illustrate the application of the proposed model and the efficiency of the solution algorithm.
基金Projects(71601015,71501013,71471014)supported by the National Natural Science Foundation of ChinaProject(2015JBM060)supported by the Fundamental Research Funds for the Central Universities,China
文摘The violation of monotonicity on reliability measures(RMs)usually makes the mathematical programming algorithms less efficient in solving the reliability-based user equilibrium(RUE)problem.The swapping algorithms provide a simple and convenient alternative to search traffic equilibrium since they are derivative-free and require weaker monotonicity.However,the existing swapping algorithms are usually based on linear swapping processes which cannot naturally avoid overswapping,and the step-size parameter update methods do not take the swapping feature into account.In this paper,we suggest a self-regulating pairwise swapping algorithm(SRPSA)to search RUE.SRPSA comprises an RM-based pairwise swapping process(RMPSP),a parameter self-diminishing operator and a termination criterion.SRPSA does not need to check the feasibility of either solutions or step-size parameter.It is suggested from the numerical analyses that SRPSA is effective and can swap to the quasi-RUE very fast.Therefore,SRPSA offers a good approach to generate initial points for those superior local search algorithms.
文摘To work efficiently with DSS, most users need assistance in representation conversion, i. e., translating the specific outcome from the DSS into the universal language of visual. In generally, it is much easier to understand the results from the DSS if they are translated into charts, maps, and other scientific displays, because visualization exploits human natural ability to recognize and understand visual pattern. In this paper we discuss the concept of visualization for DSS. AniGraftool, a software system, is introduced as an example of Visualized User Interface for DSS.
基金Projects(51378119,51578150)supported by the National Natural Science Foundation of China
文摘Advanced traveler information systems (ATIS) can not only improve drivers' accessibility to the more accurate route travel time information, but also can improve drivers' adaptability to the stochastic network capacity degradations. In this paper, a mixed stochastic user equilibrium model was proposed to describe the interactive route choice behaviors between ATIS equipped and unequipped drivers on a degradable transport network. In the proposed model the information accessibility of equipped drivers was reflected by lower degree of uncertainty in their stochastic equilibrium flow distributions, and their behavioral adaptability was captured by multiple equilibrium behaviors over the stochastic network state set. The mixed equilibrium model was formulated as a fixed point problem defined in the mixed route flows, and its solution was achieved by executing an iterative algorithm. Numerical experiments were provided to verify the properties of the mixed network equilibrium model and the efficiency of the iterative algorithm.
基金Project(61272148) supported by the National Natural Science Foundation of ChinaProject(2014FJ3122) supported by the Science and Technology Project of Hunan Province,China
文摘The cloud computing has been growing over the past few years, and service providers are creating an intense competitive world of business. This proliferation makes it hard for new users to select a proper service among a large amount of service candidates. A novel user preferences-aware recommendation approach for trustworthy services is presented. For describing the requirements of new users in different application scenarios, user preferences are identified by usage preference, trust preference and cost preference. According to the similarity analysis of usage preference between consumers and new users, the candidates are selected, and these data about service trust provided by them are calculated as the fuzzy comprehensive evaluations. In accordance with the trust and cost preferences of new users, the dynamic fuzzy clusters are generated based on the fuzzy similarity computation. Then, the most suitable services can be selected to recommend to new users. The experiments show that this approach is effective and feasible, and can improve the quality of services recommendation meeting the requirements of new users in different scenario.
基金Project(2012CB725400)supported by the National Basic Research Program of ChinaProjects(71271023,71322102)supported by the National Science Foundation of ChinaProject(2015JBM053)supported by the Fundamental Research Funds for the Central Universities,China
文摘The cumulative prospect theory(CPT) is applied to study travelers' route choice behavior in a degradable transport network. A cumulative prospect theory-based user equilibrium(CPT-UE) model considering stochastic perception error(SPE) within travelers' route choice decision process is developed. The SPE is conditionally dependent on the actual travel time distribution, which is different from the deterministic perception error used in the traditional logit-based stochastic user equilibrium. The CPT-UE model is formulated as a variational inequality problem and solved by a heuristic solution algorithm. Numerical examples are provided to illustrate the application of the proposed model and efficiency of the solution algorithm. The effects of SPE on the reference point determination, cumulative prospect value estimation, route choice decision and network performance evaluation are investigated.
基金Project(KYLX16_0271)supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China。
文摘Traffic assignment has been recognized as one of the key technologies in supporting transportation planning and operations.To better address the perfectly rational issue of the expected utility theory(EUT)and the overlapping path issue of the multinomial logit(MNL)model that are involved in the traffic assignment process,this paper proposes a cumulative prospect value(CPV)-based generalized nested logit(GNL)stochastic user equilibrium(SUE)model.The proposed model uses CPV to replace the utility value as the path performance within the GNL model framework.An equivalent mathematical model is provided for the proposed CPV-based GNL SUE model,which is solved by the method of successive averages(MSA).The existence and equivalence of the solution are also proved for the equivalent model.To demonstrate the performance of the proposed CPV-based GNL SUE model,three road networks are selected in the empirical test.The results show that the proposed model can jointly deal with the perfectly rational issue and the overlapping path issue,and additionally,the proposed model is shown to be applicable for large road networks.
基金supported by the Scientific and Technological Innovation Foundation of Shunde Graduate School,USTB(BK19CF002).
文摘Pilot contamination can spoil the accuracy of channel estimation and then has become one of the key problems influencing the performance of massive multiple input multiple output(MIMO)systems.This paper proposes a method based on cell classification and users grouping to mitigate the pilot contamination in multi-cell massive MIMO systems and improve the spectral efficiency.The pilots of the terminals are allocated onebit orthogonal identifier to diminish the cell categories by the operation of exclusive OR(XOR).At the same time,the users are divided into edge user groups and central user groups according to the large-scale fading coefficients by the clustering algorithm,and different pilot sequences are assigned to different groups.The simulation results show that the proposed method can effectively improve the spectral efficiency of multi-cell massive MIMO systems.