The hydrodynamic conditions present in a river delta's formation are a highly important factor in the variation between its sedimentary regulation and characteristics. In the case of the lacustrine basin river-dom...The hydrodynamic conditions present in a river delta's formation are a highly important factor in the variation between its sedimentary regulation and characteristics. In the case of the lacustrine basin river-dominated delta, water level fluctuations and fluviation, are both important controlling factors of the sedimentary characteristics and reservoir architecture. To discuss the effects of water level fluctuation on sediment characteristics and reservoir architecture of this delta, the Fangniugou section in the east of the Songliao Basin was selected for study. Based on an outcrop investigation of the lacustrine basin river-dominated delta, combining with an analysis of the major and trace chemical elements in the sediments to determine the relative water depth, through architecture bounding surfaces and lithofacies division, sedimentary microfacies recognition and architectural element research, this work illustrated the effects of water level fluctuation on the reservoir architecture and established sedimentary models for the lacustrine basin river-dominated delta under various water level conditions. The results show that there are 8 lithofacies in the Fangniugou section. The fan delta front, which is the main object of this study, develops four sedimentary microfacies that include the underwater distributary channel, river mouth bar, sheet sand and interdistributary bay. The effects of water level fluctuation on different orders geographic architecture elements are respectively reflected in the vertical combination of the composite sand bodies, the plane combination of the single sand bodies, the particle size changes in the vertical of hyperplasia in the single sand body, the coset and lamina. In the case of the sand body development of the petroliferous basin, varying water level conditions and research locations resulted in significant variation in the distribution and combination of the sand bodies in the lacustrine basin.展开更多
An online dynamic method based on electrical conductivity probe, tensiometer and datataker was presented to measure saturation-capillary pressure (S-p) relation in water-light nonaqueous phase liquid (LNAPL) two-p...An online dynamic method based on electrical conductivity probe, tensiometer and datataker was presented to measure saturation-capillary pressure (S-p) relation in water-light nonaqueous phase liquid (LNAPL) two-phase sandy medium under water level fluctuation. Three-electrode electrical conductivity probe (ECP) was used to measure water saturation. Hydrophobic tensiometer was obtained by spraying waterproof material to the ceramic cup of commercially available hydrophilic tensiometer. A couple of hydrophilic tensiometer and hydrophobic tensiometer were used to measure pore water pressure and pore LNAPL pressure of the sandy medium, respectively. All the signals from ECP and tensiometer were collected by a data taker connected with a computer. The results show that this method can finish the measurement of S-R relation of a complete drainage or imbibition process in less than 60 min. It is much more timesaving compared with 10-40 d of traditional methods. Two cycles of water level fluctuation were produced, and four saturation-capillary pressure relations including two stable residual LNAPL saturations of the sandy medium were obtained during in 350 h. The results show that this method has a good durable performance and feasibility in the porous medium with complicated multiphase flow. Although further studies are needed on the signal stability and accuracy drift of the ECP, this online dynamic method can be used successfully in the rapid characterization of a LNAPL migration in porous media.展开更多
The design lowest navigable water level is a primary index to the channel grade division.But differ- ent method can get different calculated result,and that even brings contradiction to decide the navigation grade.In ...The design lowest navigable water level is a primary index to the channel grade division.But differ- ent method can get different calculated result,and that even brings contradiction to decide the navigation grade.In this paper the differences between guaranteed rate method and guaranteed rate-frequency method on the fundamental concept of guaranteed rate and the calculated result are carried out.According to the theoreti- cal expression forms of the two methods,the reason leading to the difference is an...展开更多
基金Project(2011ZX05009-002)supported by the National Key Oil&Gas Project,ChinaProject(15CX06010A)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hydrodynamic conditions present in a river delta's formation are a highly important factor in the variation between its sedimentary regulation and characteristics. In the case of the lacustrine basin river-dominated delta, water level fluctuations and fluviation, are both important controlling factors of the sedimentary characteristics and reservoir architecture. To discuss the effects of water level fluctuation on sediment characteristics and reservoir architecture of this delta, the Fangniugou section in the east of the Songliao Basin was selected for study. Based on an outcrop investigation of the lacustrine basin river-dominated delta, combining with an analysis of the major and trace chemical elements in the sediments to determine the relative water depth, through architecture bounding surfaces and lithofacies division, sedimentary microfacies recognition and architectural element research, this work illustrated the effects of water level fluctuation on the reservoir architecture and established sedimentary models for the lacustrine basin river-dominated delta under various water level conditions. The results show that there are 8 lithofacies in the Fangniugou section. The fan delta front, which is the main object of this study, develops four sedimentary microfacies that include the underwater distributary channel, river mouth bar, sheet sand and interdistributary bay. The effects of water level fluctuation on different orders geographic architecture elements are respectively reflected in the vertical combination of the composite sand bodies, the plane combination of the single sand bodies, the particle size changes in the vertical of hyperplasia in the single sand body, the coset and lamina. In the case of the sand body development of the petroliferous basin, varying water level conditions and research locations resulted in significant variation in the distribution and combination of the sand bodies in the lacustrine basin.
基金Project(8151027501000008) supported by Guangdong Natural Science Foundation, ChinaProject(2007490511) supported by the Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, ChinaProject (2006K0006) supported by the Open Foundation of Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, China
文摘An online dynamic method based on electrical conductivity probe, tensiometer and datataker was presented to measure saturation-capillary pressure (S-p) relation in water-light nonaqueous phase liquid (LNAPL) two-phase sandy medium under water level fluctuation. Three-electrode electrical conductivity probe (ECP) was used to measure water saturation. Hydrophobic tensiometer was obtained by spraying waterproof material to the ceramic cup of commercially available hydrophilic tensiometer. A couple of hydrophilic tensiometer and hydrophobic tensiometer were used to measure pore water pressure and pore LNAPL pressure of the sandy medium, respectively. All the signals from ECP and tensiometer were collected by a data taker connected with a computer. The results show that this method can finish the measurement of S-R relation of a complete drainage or imbibition process in less than 60 min. It is much more timesaving compared with 10-40 d of traditional methods. Two cycles of water level fluctuation were produced, and four saturation-capillary pressure relations including two stable residual LNAPL saturations of the sandy medium were obtained during in 350 h. The results show that this method has a good durable performance and feasibility in the porous medium with complicated multiphase flow. Although further studies are needed on the signal stability and accuracy drift of the ECP, this online dynamic method can be used successfully in the rapid characterization of a LNAPL migration in porous media.
基金Supported by the National Key Basic Resarch and Development Plan (Grant 2003CB415200)
文摘The design lowest navigable water level is a primary index to the channel grade division.But differ- ent method can get different calculated result,and that even brings contradiction to decide the navigation grade.In this paper the differences between guaranteed rate method and guaranteed rate-frequency method on the fundamental concept of guaranteed rate and the calculated result are carried out.According to the theoreti- cal expression forms of the two methods,the reason leading to the difference is an...