期刊文献+
共找到367篇文章
< 1 2 19 >
每页显示 20 50 100
A dual adaptive unscented Kalman filter algorithm for SINS-based integrated navigation system 被引量:1
1
作者 LYU Xu MENG Ziyang +4 位作者 LI Chunyu CAI Zhenyu HUANG Yi LI Xiaoyong YU Xingkai 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期732-740,共9页
In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual ... In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified. 展开更多
关键词 kalman filter dual-adaptive integrated navigation unscented kalman filter(ukf) ROBUST
在线阅读 下载PDF
自适应IMM-UKF机动目标跟踪算法
2
作者 周晓 牟新刚 +2 位作者 柯文 苏盈 王丽 《系统工程与电子技术》 北大核心 2025年第8期2686-2695,共10页
针对跟踪复杂机动目标过程中由于目标运动状态发生变化导致的跟踪误差较大的问题,提出一种自适应交互多模型无迹卡尔曼滤波(interacting multiple model unscented Kalman filter,IMM-UKF)算法,使用模型概率后验信息和模型似然函数自适... 针对跟踪复杂机动目标过程中由于目标运动状态发生变化导致的跟踪误差较大的问题,提出一种自适应交互多模型无迹卡尔曼滤波(interacting multiple model unscented Kalman filter,IMM-UKF)算法,使用模型概率后验信息和模型似然函数自适应修正马尔可夫转移概率矩阵(transition probability matrix,TPM)。设计模型概率校正方法和模型转移加速方法,两种方法分别作用于模型稳定阶段和模型转移阶段,提高模型概率准确度和模型转移响应速度,减小状态估计误差。最后,通过两种场景下的实验验证所提算法在目标具有复杂运动状态下的性能,并与传统方法进行对比分析,在目标做机动运动时,位置精度和速度精度分别提高了15%和26%,验证了算法的有效性和可行性。 展开更多
关键词 目标跟踪 交互多模型 自适应 无迹卡尔曼滤波
在线阅读 下载PDF
带状态检测机制的ELM-UKF算法估计锂电池SOC策略
3
作者 谈发明 赵俊杰 《汽车技术》 北大核心 2025年第2期46-54,共9页
为解决无迹卡尔曼滤波(UKF)算法对锂电池荷电状态(SOC)估计精度不高的问题,结合极限学习机(ELM)与UKF间的互补优势,提出了一种带状态检测机制的ELM-UKF组合算法估计锂电池SOC。首先,算法利用UKF估计电池SOC的相关滤波数据作为样本集训练... 为解决无迹卡尔曼滤波(UKF)算法对锂电池荷电状态(SOC)估计精度不高的问题,结合极限学习机(ELM)与UKF间的互补优势,提出了一种带状态检测机制的ELM-UKF组合算法估计锂电池SOC。首先,算法利用UKF估计电池SOC的相关滤波数据作为样本集训练ELM模型,将训练成功的ELM模型用于在线补偿UKF的SOC估计误差,进而实现估计偏差的实时修正;其次,算法针对ELM模型预测输出设计了状态检测机制,以此减小ELM模型预测输出过拟合对SOC估计波形平滑度的影响。试验结果表明,相较于单一类型的算法,所提出的组合算法具有良好的鲁棒性和泛化性,能有效提升锂电池SOC的估计效果。 展开更多
关键词 荷电状态 无迹卡尔曼滤波 极限学习机 状态检测 精度
在线阅读 下载PDF
基于DAUKF的锂离子电池SOC和SOE估算
4
作者 朱锦 李珊珊 张阿香 《电池》 北大核心 2025年第3期456-462,共7页
电荷状态(SOC)和能量状态(SOE)估算有助于延长锂离子电池的电池寿命和确保系统可靠性。提出一种双自适应无迹卡尔曼滤波(DAUKF)算法,同时估算SOC和SOE,在动态应力测试(DST)动态驾驶曲线、US06动态驾驶曲线和联邦城市驾驶时间表(FUDS)动... 电荷状态(SOC)和能量状态(SOE)估算有助于延长锂离子电池的电池寿命和确保系统可靠性。提出一种双自适应无迹卡尔曼滤波(DAUKF)算法,同时估算SOC和SOE,在动态应力测试(DST)动态驾驶曲线、US06动态驾驶曲线和联邦城市驾驶时间表(FUDS)动态驾驶曲线下,进行验证。DAUKF算法能准确估算SOC和SOE,SOC的均方根误差(RMSE)分别为0.07%、0.29%和0.31%,SOE的RMSE分别为0.07%、0.30%和0.31%。与自适应无迹卡尔曼滤波(AUKF)算法相比,DAUKF算法在估计精度上表现更优。 展开更多
关键词 锂离子电池 双自适应无迹卡尔曼滤波(DAukf)算法 状态估计 电荷状态(SOC) 能量状态(SOE)
在线阅读 下载PDF
考虑噪声和初始状态不确定性的车辆状态UKF估计
5
作者 张志勇 杜宸胄 +1 位作者 易晟 于辉 《汽车安全与节能学报》 北大核心 2025年第3期414-424,共11页
为提高车辆在噪声协方差矩阵和初始状态存在不确定性时的状态估计精度,提出了改进无迹Kalman滤波(UKF)车辆状态估计方法。该方法基于最大后验概率估计(MAP)策略引入加窗处理,实现对噪声协方差矩阵的动态估计;同时结合静态粒子滤波(SPF)... 为提高车辆在噪声协方差矩阵和初始状态存在不确定性时的状态估计精度,提出了改进无迹Kalman滤波(UKF)车辆状态估计方法。该方法基于最大后验概率估计(MAP)策略引入加窗处理,实现对噪声协方差矩阵的动态估计;同时结合静态粒子滤波(SPF)算法,对车辆初始状态进行估计。利用CarSim与MATLAB/Simulink的联合仿真平台,对改进UKF的车辆状态估计精度进行验证。结果表明:在量测噪声偏离真实值的情况下,采用加窗MAP噪声协方差矩阵动态估计方法相比标准UKF,纵向与横向车速的估计精度分别提升了90%和80%;与噪声协方差矩阵自适应调整的UKF相比,估计精度分别提高了75%和56%。在初始状态不确定的情况下,SPF方法分别提高了纵向和横向车速的估计精度为94%和90%。因此提出的改进UKF估计方法在噪声协方差矩阵和初始状态存在不确定性时,显著提升了估计精度和鲁棒性。 展开更多
关键词 电动汽车 车辆状态估计 无迹kalman滤波(ukf) 最大后验概率估计(MAP) 静态粒子滤波(SPF)
在线阅读 下载PDF
基于阻容参数滤波优化UKF的锂电池SOC估计 被引量:1
6
作者 胡劲 赵靖英 +1 位作者 姚帅亮 张文煜 《电源学报》 北大核心 2025年第2期247-255,共9页
锂电池荷电状态SOC(state-of-charge)的快速精确估计,对电池管理系统至关重要。针对卡尔曼滤波算法估计锂电池SOC时阻容参数缺乏合理约束的问题,提出1种阻容参数滤波优化方法,结合无迹卡尔曼滤波UKF(unscented Kalman filter)实现锂电池... 锂电池荷电状态SOC(state-of-charge)的快速精确估计,对电池管理系统至关重要。针对卡尔曼滤波算法估计锂电池SOC时阻容参数缺乏合理约束的问题,提出1种阻容参数滤波优化方法,结合无迹卡尔曼滤波UKF(unscented Kalman filter)实现锂电池SOC估计的快速精确收敛。首先,结合多项式建立锂电池等效电路模型;然后,利用带遗忘因子的递推最小二乘法获取时变和时不变的模型阻容参数,通过设置卡尔曼增益阈值,建立阻容参数滤波关系式,提出阻容参数滤波优化无迹卡尔曼滤波算法,估计锂电池SOC;最后,设计混合功率脉冲特性实验、间歇恒流放电实验和动应力测试实验,验证设计方法的收敛性和鲁棒性,SOC最大估计误差低于1.0%,并给出增益阈值参考范围。 展开更多
关键词 锂电池 荷电状态 阻容参数 无迹卡尔曼滤波
在线阅读 下载PDF
Unscented extended Kalman filter for target tracking 被引量:21
7
作者 Changyun Liu Penglang Shui Song Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第2期188-192,共5页
A new method of unscented extended Kalman filter (UEKF) for nonlinear system is presented. This new method is a combination of the unscented transformation and the extended Kalman filter (EKF). The extended Kalman... A new method of unscented extended Kalman filter (UEKF) for nonlinear system is presented. This new method is a combination of the unscented transformation and the extended Kalman filter (EKF). The extended Kalman filter is similar to that in a conventional EKF. However, in every running step of the EKF the unscented transformation is running, the deterministic sample is caught by unscented transformation, then posterior mean of non- lineadty is caught by propagating, but the posterior covariance of nonlinearity is caught by linearizing. The accuracy of new method is a little better than that of the unscented Kalman filter (UKF), however, the computational time of the UEKF is much less than that of the UKF. 展开更多
关键词 unscented transformation (UT) extended kalman filter (EKF) unscented extended kalman filter (UEKF) unscentedkalman filter ukf nonliearity.
在线阅读 下载PDF
Modified unscented Kalman filter using modified filter gain and variance scale factor for highly maneuvering target tracking 被引量:10
8
作者 Changyun Liu Penglang Shui +1 位作者 Gang Wei Song Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第3期380-385,共6页
To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive... To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive scale factor of state noise is presented. In every filter process, the estimated scale factor is used to update the state noise covariance Qk, and the improved filter gain is obtained in the filter process of unscented Kalman filter (UKF) via predicted variance Pk|k-1, which is similar to the standard Kalman filter. Simulation results show that the proposed algorithm provides better accuracy and ability to adapt to the highly maneuvering target compared with the standard UKF. 展开更多
关键词 unscented kalman filter ukf target tracking filter gain maneuvering target NONLINEARITY modified unscented kalman filter (Mukf).
在线阅读 下载PDF
Adaptive unscented Kalman filter for parameter and state estimation of nonlinear high-speed objects 被引量:11
9
作者 Fang Deng Jie Chen Chen Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第4期655-665,共11页
An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed... An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed to improve the tracking ability and robustness of unscented Kalman filter (UKF) when the process noise is inaccuracy, and wavelet transform is used to improve the estimate accuracy by the variance of measurement noise. An augmented square-root framework is utilized to improve the numerical stability and accuracy of UKF. Monte Carlo simulations and applications in the rapid trajectory estimation of hypersonic artillery shells confirm the effectiveness of the proposed method. 展开更多
关键词 parameter estimation state estimation unscented kalman filter ukf strong tracking filter wavelet transform.
在线阅读 下载PDF
Phase noise filtering and phase unwrapping method based on unscented Kalman filter 被引量:8
10
作者 Xianming Xie Yiming Pi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期365-372,共8页
This paper presents a new phase unwrapping algorithm based on the unscented Kalman filter(UKF) for synthetic aperture radar(SAR) interferometry.This method is the result of combining an UKF with path-following str... This paper presents a new phase unwrapping algorithm based on the unscented Kalman filter(UKF) for synthetic aperture radar(SAR) interferometry.This method is the result of combining an UKF with path-following strategy and an omni-directional local phase slope estimator.This technique performs simultaneously noise filtering and phase unwrapping along the high-quality region to the low-quality region,which is also able to avoid going directly through the noisy regions.In addition,phase slope is estimated directly from the sample frequency spectrum of the complex interferogram,by which the underestimation of phase slope is overcome.Simulation and real data processing results validate the effectiveness of the proposed method,and show a significant improvement with respect to the extended Kalman filtering(EKF) algorithm and some conventional phase unwrapping algorithms in some situations. 展开更多
关键词 phase unwrapping unscented kalman filterukf path-following strategy.
在线阅读 下载PDF
Airship aerodynamic model estimation using unscented Kalman filter 被引量:11
11
作者 WASIM Muhammad ALI Ahsan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1318-1329,共12页
An airship model is made-up of aerostatic,aerodynamic,dynamic,and propulsive forces and torques.Besides others,the computation of aerodynamic forces and torques is difficult.Usually,wind tunnel experimentation and pot... An airship model is made-up of aerostatic,aerodynamic,dynamic,and propulsive forces and torques.Besides others,the computation of aerodynamic forces and torques is difficult.Usually,wind tunnel experimentation and potential flow theory are used for their calculations.However,the limitations of these methods pose difficulties in their accurate calculation.In this work,an online estimation scheme based on unscented Kalman filter(UKF)is proposed for their calculation.The proposed method introduces six auxiliary states for the complete aerodynamic model.UKF uses an extended model and provides an estimate of a complete state vector along with auxiliary states.The proposed method uses the minimum auxiliary state variables for the approximation of the complete aerodynamic model that makes it computationally less intensive.UKF estimation performance is evaluated by developing a nonlinear simulation environment for University of Engineering and Technology,Taxila(UETT)airship.Estimator performance is validated by performing the error analysis based on estimation error and 2-σ uncertainty bound.For the same problem,the extended Kalman filter(EKF)is also implemented and its results are compared with UKF.The simulation results show that UKF successfully estimates the forces and torques due to the aerodynamic model with small estimation error and the comparative analysis with EKF shows that UKF improves the estimation results and also it is more suitable for the under-consideration problem. 展开更多
关键词 AIRSHIP unscented kalman filter(ukf) extend kalman filter(EKF) state estimation aerodynamic model estimation
在线阅读 下载PDF
Fault tolerant navigation method for satellite based on information fusion and unscented Kalman filter 被引量:3
12
作者 Dan Li Jianye Liu +1 位作者 Li Qiao Zhi Xiong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第4期682-687,共6页
An effective autonomous navigation system for the integration of star sensor,infrared horizon sensor,magnetometer,radar altimeter and ultraviolet sensor is developed.The requirements of the integrated navigation syste... An effective autonomous navigation system for the integration of star sensor,infrared horizon sensor,magnetometer,radar altimeter and ultraviolet sensor is developed.The requirements of the integrated navigation system manager make optimum use of the various navigation sensors and allow rapid fault detection,isolation and recovery.The normal full fusion feedback method of federated unscented Kalman filter(UKF) cannot meet the needs of it.So a no-reset feedback federated Kalman filter architecture is developed and used in the autonomous navigation system.The minimal skew sigma points are chosen to improve the calculation speed.Simulation results are presented to demonstrate the advantages of the algorithm.These advantages include improved failure detection and correction,improved computational efficiency,and reliability.Additionally,its' accuracy is higher than that of the full fusion feedback method. 展开更多
关键词 autonomous navigation information fusion unscented kalman filterukf fault detection.
在线阅读 下载PDF
基于LQR和UKF的软体机器人无模型轨迹跟踪控制
13
作者 关胜闯 柳宇钧 +1 位作者 杨清昊 刘兆冰 《中国机械工程》 北大核心 2025年第3期570-575,583,共7页
针对软体机器人精确建模和控制问题提出一种新颖的非线性估计和控制策略,用于控制二维气动软体机器人的动态性能。采用基于Koopman算子的数据驱动方法建立二维气动软体机器人的线性模型。利用无迹卡尔曼滤波器(UKF)进行传感器数据滤波... 针对软体机器人精确建模和控制问题提出一种新颖的非线性估计和控制策略,用于控制二维气动软体机器人的动态性能。采用基于Koopman算子的数据驱动方法建立二维气动软体机器人的线性模型。利用无迹卡尔曼滤波器(UKF)进行传感器数据滤波和系统状态估计,同时利用线性二次型调节器(LQR)来实现轨迹跟踪的最优控制。仿真和实验比较结果一致表明,所提方法在轨迹跟踪性能方面优于另两种方法。 展开更多
关键词 软体机器人 Koopman算子 LQR控制 无迹卡尔曼滤波器
在线阅读 下载PDF
采用自适应Unscented Kalman的粒子滤波 被引量:7
14
作者 聂建亮 《大地测量与地球动力学》 CSCD 北大核心 2008年第3期87-91,共5页
针对粒子滤波的粒子退化问题,使用自适应UKF进行重点采样。该方法使用自适应因子调整Unscented Kalman滤波的观测信息与动力学信息之间的权比,使滤波预测值的协方差更趋向真实值。与扩展Kalman滤波、自适应扩展Kalman滤波、Unscented Ka... 针对粒子滤波的粒子退化问题,使用自适应UKF进行重点采样。该方法使用自适应因子调整Unscented Kalman滤波的观测信息与动力学信息之间的权比,使滤波预测值的协方差更趋向真实值。与扩展Kalman滤波、自适应扩展Kalman滤波、Unscented Kalman滤波重点采样方法相比,自适应UKF重点采样进一步提高了粒子滤波的精度。 展开更多
关键词 粒子滤波 unscented kalman滤波(ukf) 白适应因子 扩展kalman滤波(EKF) 重点采样
在线阅读 下载PDF
一种基于模型概率单调性变化的自适应IMM-UKF改进算法 被引量:2
15
作者 王平波 陈强 +2 位作者 卫红凯 贾耀君 沙浩然 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第1期41-48,共8页
针对现有交互式多模型(IMM)算法模型间切换迟滞和转换速率慢的缺点,提出一种基于模型概率单调性变化的自适应交互式多模型无迹卡尔曼滤波改进算法(mIMM-UKF)。该算法利用后验信息模型概率的单调性,对马尔可夫转移概率矩阵及模型估计概... 针对现有交互式多模型(IMM)算法模型间切换迟滞和转换速率慢的缺点,提出一种基于模型概率单调性变化的自适应交互式多模型无迹卡尔曼滤波改进算法(mIMM-UKF)。该算法利用后验信息模型概率的单调性,对马尔可夫转移概率矩阵及模型估计概率进行二次修正,加快了匹配模型的切换速度及转换速率。仿真结果表明,与现有算法相比,该算法通过快速切换匹配模型,有效提高了水下目标跟踪精度。 展开更多
关键词 水下目标跟踪 IMM-ukf算法 自适应 转移概率矩阵 单调性
在线阅读 下载PDF
基于CSO-AUKF的锂电池SOC估算方法 被引量:1
16
作者 吴华伟 洪强 +1 位作者 陈运星 马毓博 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第9期118-126,共9页
电池荷电状态(SOC)估算是电池管理系统(BMS)的关键技术之一。针对锂电池提出了一种基于猫群(CSO)算法和自适应无迹卡尔曼滤波(AUKF)算法相结合的电池SOC估算方法;建立了基于二阶RC等效电路模型的锂电池状态方程,采用CSO算法提高电池辨... 电池荷电状态(SOC)估算是电池管理系统(BMS)的关键技术之一。针对锂电池提出了一种基于猫群(CSO)算法和自适应无迹卡尔曼滤波(AUKF)算法相结合的电池SOC估算方法;建立了基于二阶RC等效电路模型的锂电池状态方程,采用CSO算法提高电池辨识精度,联合AUKF算法对SOC进行估算;基于混合脉冲功率测试工况(HPPC)和间歇恒流放电工况下的数据对该方法有效性进行了验证。研究结果表明:基于CSO-AUKF估算,SOC最大误差小于1.64%,估算精度及稳定性均好于遗传算法。 展开更多
关键词 车辆工程 锂电池汽车 荷电状态(SOC) 猫群(CSO)算法 自适应无迹卡尔曼滤波(Aukf)算法
在线阅读 下载PDF
融合改进人工蜂群的UKF算法研究
17
作者 刘建娟 李志伟 +2 位作者 姬淼鑫 吴豪然 李浩 《电光与控制》 CSCD 北大核心 2024年第11期10-17,共8页
针对无迹卡尔曼滤波(UKF)算法在状态估计时异常系统噪声协方差矩阵影响滤波性能的问题,提出一种利用改进人工蜂群优化UKF的算法。首先,在UKF算法过程中引入IABC算法对系统噪声协方差矩阵寻优选择,从而实现自适应调节系统噪声协方差矩阵... 针对无迹卡尔曼滤波(UKF)算法在状态估计时异常系统噪声协方差矩阵影响滤波性能的问题,提出一种利用改进人工蜂群优化UKF的算法。首先,在UKF算法过程中引入IABC算法对系统噪声协方差矩阵寻优选择,从而实现自适应调节系统噪声协方差矩阵,提高估计精度;其次,对传统ABC算法采用Circle混沌初始化策略,增加人工蜂群初始种群的多样性;同时采用偏好随机游动策略,平衡算法的开发与探索能力,增强算法的稳定性;最后,通过动态扰动因子策略增强算法后期寻找最优解的能力,提高收敛速度,进一步优化算法性能。实验结果表明,相较于ABC算法,IABC算法在寻优性能上有明显提升。同时,通过对比UKF算法和IABC-UKF算法,验证了IABC-UKF算法的可行性,其位置均方根误差不大于1.4 m,表明该算法滤波效果较好且误差波动小,能够有效提高估计精度。 展开更多
关键词 无迹卡尔曼滤波 系统噪声协方差矩阵 人工蜂群算法 偏好随机游动 动态扰动因子
在线阅读 下载PDF
An Adaptive UKF Algorithm for the State and Parameter Estimations of a Mobile Robot 被引量:28
18
作者 SONG Qi HAN Jian-Da 《自动化学报》 EI CSCD 北大核心 2008年第1期72-79,共8页
For improving the estimation accuracy and the convergence speed of the unscented Kalman filter(UKF),a novel adaptive filter method is proposed.The error between the covariance matrices of innovation measurements and t... For improving the estimation accuracy and the convergence speed of the unscented Kalman filter(UKF),a novel adaptive filter method is proposed.The error between the covariance matrices of innovation measurements and their corresponding estimations/predictions is utilized as the cost function.On the basis of the MIT rule,an adaptive algorithm is designed to update the covariance of the process uncertainties online by minimizing the cost function.The updated covariance is fed back into the normal UKF.Such an adaptive mechanism is intended to compensate the lack of a priori knowledge of the process uncertainty distribution and to improve the performance of UKF for the active state and parameter estimations.The asymptotic properties of this adaptive UKF are discussed.Simulations are conducted using an omni-directional mobile robot,and the results are compared with those obtained by normal UKF to demonstrate its effectiveness and advantage over the previous methods. 展开更多
关键词 卡尔曼滤波器算法 移动式遥控装置 状态估计 参数估计 过程协方差
在线阅读 下载PDF
基于IMM-JPDA-ISTUKF的车载毫米波雷达多目标跟踪算法 被引量:3
19
作者 蒋凯 周建江 +1 位作者 吕瑞广 李晓航 《现代雷达》 CSCD 北大核心 2024年第8期47-54,共8页
为提高车载毫米波雷达多目标跟踪精度指标,提升道路车辆行驶安全性,文中在交互多模型无迹卡尔曼滤波(IMM-UKF)和联合概率数据关联(JPDA)融合的算法基础上,针对车辆运动状态突变处UKF鲁棒性差、滤波精度低的问题,提出了一种基于改进强跟... 为提高车载毫米波雷达多目标跟踪精度指标,提升道路车辆行驶安全性,文中在交互多模型无迹卡尔曼滤波(IMM-UKF)和联合概率数据关联(JPDA)融合的算法基础上,针对车辆运动状态突变处UKF鲁棒性差、滤波精度低的问题,提出了一种基于改进强跟踪UKF(ISTUKF)的IMM-JPDA-ISTUKF算法。通过模拟道路场景搭建的仿真环境对算法性能进行了验证,且为证明该算法在实际道路工况下跟踪精度的提升,还进行了雷达道路测试,通过雷达在道路上获取的车辆数据进一步验证了该算法的有效性。结果表明,该算法在目标车辆运动状态发生变化时的距离跟踪精度和速度跟踪精度方面均得到了提高。 展开更多
关键词 多目标跟踪 无迹卡尔曼滤波 强跟踪滤波 交互多模型 车载毫米波雷达
在线阅读 下载PDF
基于FFRLS和ASR-UKF滤波算法的锂电池SOC估计 被引量:2
20
作者 邓丹 刘胜永 +2 位作者 王顺利 刘鹏辉 胡聪 《电源技术》 CAS 北大核心 2024年第2期299-305,共7页
锂电池在工作过程中,其内部参数易受多种因素影响,为提高锂电池在复杂环境下荷电状态(SOC)估计精度,以二阶戴维宁(Thevenin)等效模型为基础,结合遗忘因子递推最小二乘法(FFRLS)对模型参数进行在线辨识。针对传统卡尔曼滤波算法高度非线... 锂电池在工作过程中,其内部参数易受多种因素影响,为提高锂电池在复杂环境下荷电状态(SOC)估计精度,以二阶戴维宁(Thevenin)等效模型为基础,结合遗忘因子递推最小二乘法(FFRLS)对模型参数进行在线辨识。针对传统卡尔曼滤波算法高度非线性及系统噪声不确定性等缺点,提出了一种自适应平方根无迹卡尔曼滤波(ASR-UKF)算法,该算法利用平方根算法处理均值和协方差,确保了状态协方差的半正定性和稳定性,并引入自适应滤波算法对噪声进行实时修正,消除了系统时变噪声影响。结果表明,FFRLS能有效解决数据饱和及算法矩阵计算量大的问题,等效模型精度高达98%。在混合动力脉冲特性(HPPC)测试和北京公交动态测试工况(BBDST)下,ASR-UKF算法SOC估计最大误差分别为3.264%和0.572%,具备更好的跟踪效果,验证了改进算法良好的收敛性与自适应性。 展开更多
关键词 荷电状态 二阶Thevenin模型 遗忘因子递推最小二乘法 自适应平方根无迹卡尔曼滤波算法
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部