In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual ...In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified.展开更多
针对跟踪复杂机动目标过程中由于目标运动状态发生变化导致的跟踪误差较大的问题,提出一种自适应交互多模型无迹卡尔曼滤波(interacting multiple model unscented Kalman filter,IMM-UKF)算法,使用模型概率后验信息和模型似然函数自适...针对跟踪复杂机动目标过程中由于目标运动状态发生变化导致的跟踪误差较大的问题,提出一种自适应交互多模型无迹卡尔曼滤波(interacting multiple model unscented Kalman filter,IMM-UKF)算法,使用模型概率后验信息和模型似然函数自适应修正马尔可夫转移概率矩阵(transition probability matrix,TPM)。设计模型概率校正方法和模型转移加速方法,两种方法分别作用于模型稳定阶段和模型转移阶段,提高模型概率准确度和模型转移响应速度,减小状态估计误差。最后,通过两种场景下的实验验证所提算法在目标具有复杂运动状态下的性能,并与传统方法进行对比分析,在目标做机动运动时,位置精度和速度精度分别提高了15%和26%,验证了算法的有效性和可行性。展开更多
A new method of unscented extended Kalman filter (UEKF) for nonlinear system is presented. This new method is a combination of the unscented transformation and the extended Kalman filter (EKF). The extended Kalman...A new method of unscented extended Kalman filter (UEKF) for nonlinear system is presented. This new method is a combination of the unscented transformation and the extended Kalman filter (EKF). The extended Kalman filter is similar to that in a conventional EKF. However, in every running step of the EKF the unscented transformation is running, the deterministic sample is caught by unscented transformation, then posterior mean of non- lineadty is caught by propagating, but the posterior covariance of nonlinearity is caught by linearizing. The accuracy of new method is a little better than that of the unscented Kalman filter (UKF), however, the computational time of the UEKF is much less than that of the UKF.展开更多
To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive...To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive scale factor of state noise is presented. In every filter process, the estimated scale factor is used to update the state noise covariance Qk, and the improved filter gain is obtained in the filter process of unscented Kalman filter (UKF) via predicted variance Pk|k-1, which is similar to the standard Kalman filter. Simulation results show that the proposed algorithm provides better accuracy and ability to adapt to the highly maneuvering target compared with the standard UKF.展开更多
An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed...An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed to improve the tracking ability and robustness of unscented Kalman filter (UKF) when the process noise is inaccuracy, and wavelet transform is used to improve the estimate accuracy by the variance of measurement noise. An augmented square-root framework is utilized to improve the numerical stability and accuracy of UKF. Monte Carlo simulations and applications in the rapid trajectory estimation of hypersonic artillery shells confirm the effectiveness of the proposed method.展开更多
This paper presents a new phase unwrapping algorithm based on the unscented Kalman filter(UKF) for synthetic aperture radar(SAR) interferometry.This method is the result of combining an UKF with path-following str...This paper presents a new phase unwrapping algorithm based on the unscented Kalman filter(UKF) for synthetic aperture radar(SAR) interferometry.This method is the result of combining an UKF with path-following strategy and an omni-directional local phase slope estimator.This technique performs simultaneously noise filtering and phase unwrapping along the high-quality region to the low-quality region,which is also able to avoid going directly through the noisy regions.In addition,phase slope is estimated directly from the sample frequency spectrum of the complex interferogram,by which the underestimation of phase slope is overcome.Simulation and real data processing results validate the effectiveness of the proposed method,and show a significant improvement with respect to the extended Kalman filtering(EKF) algorithm and some conventional phase unwrapping algorithms in some situations.展开更多
An airship model is made-up of aerostatic,aerodynamic,dynamic,and propulsive forces and torques.Besides others,the computation of aerodynamic forces and torques is difficult.Usually,wind tunnel experimentation and pot...An airship model is made-up of aerostatic,aerodynamic,dynamic,and propulsive forces and torques.Besides others,the computation of aerodynamic forces and torques is difficult.Usually,wind tunnel experimentation and potential flow theory are used for their calculations.However,the limitations of these methods pose difficulties in their accurate calculation.In this work,an online estimation scheme based on unscented Kalman filter(UKF)is proposed for their calculation.The proposed method introduces six auxiliary states for the complete aerodynamic model.UKF uses an extended model and provides an estimate of a complete state vector along with auxiliary states.The proposed method uses the minimum auxiliary state variables for the approximation of the complete aerodynamic model that makes it computationally less intensive.UKF estimation performance is evaluated by developing a nonlinear simulation environment for University of Engineering and Technology,Taxila(UETT)airship.Estimator performance is validated by performing the error analysis based on estimation error and 2-σ uncertainty bound.For the same problem,the extended Kalman filter(EKF)is also implemented and its results are compared with UKF.The simulation results show that UKF successfully estimates the forces and torques due to the aerodynamic model with small estimation error and the comparative analysis with EKF shows that UKF improves the estimation results and also it is more suitable for the under-consideration problem.展开更多
An effective autonomous navigation system for the integration of star sensor,infrared horizon sensor,magnetometer,radar altimeter and ultraviolet sensor is developed.The requirements of the integrated navigation syste...An effective autonomous navigation system for the integration of star sensor,infrared horizon sensor,magnetometer,radar altimeter and ultraviolet sensor is developed.The requirements of the integrated navigation system manager make optimum use of the various navigation sensors and allow rapid fault detection,isolation and recovery.The normal full fusion feedback method of federated unscented Kalman filter(UKF) cannot meet the needs of it.So a no-reset feedback federated Kalman filter architecture is developed and used in the autonomous navigation system.The minimal skew sigma points are chosen to improve the calculation speed.Simulation results are presented to demonstrate the advantages of the algorithm.These advantages include improved failure detection and correction,improved computational efficiency,and reliability.Additionally,its' accuracy is higher than that of the full fusion feedback method.展开更多
For improving the estimation accuracy and the convergence speed of the unscented Kalman filter(UKF),a novel adaptive filter method is proposed.The error between the covariance matrices of innovation measurements and t...For improving the estimation accuracy and the convergence speed of the unscented Kalman filter(UKF),a novel adaptive filter method is proposed.The error between the covariance matrices of innovation measurements and their corresponding estimations/predictions is utilized as the cost function.On the basis of the MIT rule,an adaptive algorithm is designed to update the covariance of the process uncertainties online by minimizing the cost function.The updated covariance is fed back into the normal UKF.Such an adaptive mechanism is intended to compensate the lack of a priori knowledge of the process uncertainty distribution and to improve the performance of UKF for the active state and parameter estimations.The asymptotic properties of this adaptive UKF are discussed.Simulations are conducted using an omni-directional mobile robot,and the results are compared with those obtained by normal UKF to demonstrate its effectiveness and advantage over the previous methods.展开更多
基金supported by China Postdoctoral Science Foundation(2023M741882)the National Natural Science Foundation of China(62103222,62273195)。
文摘In this study, the problem of measuring noise pollution distribution by the intertial-based integrated navigation system is effectively suppressed. Based on nonlinear inertial navigation error modeling, a nested dual Kalman filter framework structure is developed. It consists of unscented Kalman filter (UKF)master filter and Kalman filter slave filter. This method uses nonlinear UKF for integrated navigation state estimation. At the same time, the exact noise measurement covariance is estimated by the Kalman filter dependency filter. The algorithm based on dual adaptive UKF (Dual-AUKF) has high accuracy and robustness, especially in the case of measurement information interference. Finally, vehicle-mounted and ship-mounted integrated navigation tests are conducted. Compared with traditional UKF and the Sage-Husa adaptive UKF (SH-AUKF), this method has comparable filtering accuracy and better filtering stability. The effectiveness of the proposed algorithm is verified.
文摘针对跟踪复杂机动目标过程中由于目标运动状态发生变化导致的跟踪误差较大的问题,提出一种自适应交互多模型无迹卡尔曼滤波(interacting multiple model unscented Kalman filter,IMM-UKF)算法,使用模型概率后验信息和模型似然函数自适应修正马尔可夫转移概率矩阵(transition probability matrix,TPM)。设计模型概率校正方法和模型转移加速方法,两种方法分别作用于模型稳定阶段和模型转移阶段,提高模型概率准确度和模型转移响应速度,减小状态估计误差。最后,通过两种场景下的实验验证所提算法在目标具有复杂运动状态下的性能,并与传统方法进行对比分析,在目标做机动运动时,位置精度和速度精度分别提高了15%和26%,验证了算法的有效性和可行性。
文摘A new method of unscented extended Kalman filter (UEKF) for nonlinear system is presented. This new method is a combination of the unscented transformation and the extended Kalman filter (EKF). The extended Kalman filter is similar to that in a conventional EKF. However, in every running step of the EKF the unscented transformation is running, the deterministic sample is caught by unscented transformation, then posterior mean of non- lineadty is caught by propagating, but the posterior covariance of nonlinearity is caught by linearizing. The accuracy of new method is a little better than that of the unscented Kalman filter (UKF), however, the computational time of the UEKF is much less than that of the UKF.
基金supported by the National Natural Science Fundationof China(61102109)
文摘To improve the low tracking precision caused by lagged filter gain or imprecise state noise when the target highly maneuvers, a modified unscented Kalman filter algorithm based on the improved filter gain and adaptive scale factor of state noise is presented. In every filter process, the estimated scale factor is used to update the state noise covariance Qk, and the improved filter gain is obtained in the filter process of unscented Kalman filter (UKF) via predicted variance Pk|k-1, which is similar to the standard Kalman filter. Simulation results show that the proposed algorithm provides better accuracy and ability to adapt to the highly maneuvering target compared with the standard UKF.
基金supported by the National Natural Science Foundation of China (61304254)the National Science Foundation for Distinguished Young Scholars of China (60925011)the Provincial and Ministerial Key Fund of China (9140A07010511BQ0105)
文摘An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed to improve the tracking ability and robustness of unscented Kalman filter (UKF) when the process noise is inaccuracy, and wavelet transform is used to improve the estimate accuracy by the variance of measurement noise. An augmented square-root framework is utilized to improve the numerical stability and accuracy of UKF. Monte Carlo simulations and applications in the rapid trajectory estimation of hypersonic artillery shells confirm the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (60772143)
文摘This paper presents a new phase unwrapping algorithm based on the unscented Kalman filter(UKF) for synthetic aperture radar(SAR) interferometry.This method is the result of combining an UKF with path-following strategy and an omni-directional local phase slope estimator.This technique performs simultaneously noise filtering and phase unwrapping along the high-quality region to the low-quality region,which is also able to avoid going directly through the noisy regions.In addition,phase slope is estimated directly from the sample frequency spectrum of the complex interferogram,by which the underestimation of phase slope is overcome.Simulation and real data processing results validate the effectiveness of the proposed method,and show a significant improvement with respect to the extended Kalman filtering(EKF) algorithm and some conventional phase unwrapping algorithms in some situations.
文摘An airship model is made-up of aerostatic,aerodynamic,dynamic,and propulsive forces and torques.Besides others,the computation of aerodynamic forces and torques is difficult.Usually,wind tunnel experimentation and potential flow theory are used for their calculations.However,the limitations of these methods pose difficulties in their accurate calculation.In this work,an online estimation scheme based on unscented Kalman filter(UKF)is proposed for their calculation.The proposed method introduces six auxiliary states for the complete aerodynamic model.UKF uses an extended model and provides an estimate of a complete state vector along with auxiliary states.The proposed method uses the minimum auxiliary state variables for the approximation of the complete aerodynamic model that makes it computationally less intensive.UKF estimation performance is evaluated by developing a nonlinear simulation environment for University of Engineering and Technology,Taxila(UETT)airship.Estimator performance is validated by performing the error analysis based on estimation error and 2-σ uncertainty bound.For the same problem,the extended Kalman filter(EKF)is also implemented and its results are compared with UKF.The simulation results show that UKF successfully estimates the forces and torques due to the aerodynamic model with small estimation error and the comparative analysis with EKF shows that UKF improves the estimation results and also it is more suitable for the under-consideration problem.
基金supported by the Aviation Science Foundation(20070852009)
文摘An effective autonomous navigation system for the integration of star sensor,infrared horizon sensor,magnetometer,radar altimeter and ultraviolet sensor is developed.The requirements of the integrated navigation system manager make optimum use of the various navigation sensors and allow rapid fault detection,isolation and recovery.The normal full fusion feedback method of federated unscented Kalman filter(UKF) cannot meet the needs of it.So a no-reset feedback federated Kalman filter architecture is developed and used in the autonomous navigation system.The minimal skew sigma points are chosen to improve the calculation speed.Simulation results are presented to demonstrate the advantages of the algorithm.These advantages include improved failure detection and correction,improved computational efficiency,and reliability.Additionally,its' accuracy is higher than that of the full fusion feedback method.
基金Supported by National High Technology Research and Development Program of China(863 Program)Hi-Tech Research and Development Program of China(2003AA421020)
文摘For improving the estimation accuracy and the convergence speed of the unscented Kalman filter(UKF),a novel adaptive filter method is proposed.The error between the covariance matrices of innovation measurements and their corresponding estimations/predictions is utilized as the cost function.On the basis of the MIT rule,an adaptive algorithm is designed to update the covariance of the process uncertainties online by minimizing the cost function.The updated covariance is fed back into the normal UKF.Such an adaptive mechanism is intended to compensate the lack of a priori knowledge of the process uncertainty distribution and to improve the performance of UKF for the active state and parameter estimations.The asymptotic properties of this adaptive UKF are discussed.Simulations are conducted using an omni-directional mobile robot,and the results are compared with those obtained by normal UKF to demonstrate its effectiveness and advantage over the previous methods.