As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UA...As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UAVs. Existing weapon-target assignment methods primarily focus on macro cluster constraints while neglecting individual strategy updates. This paper proposes a novel weapon-target assignment method for UAVs based on the multi-strategy threshold public goods game(PGG). By analyzing the concept mapping between weapon-target assignment for UAVs and multi-strategy threshold PGG, a weapon-target assignment model for UAVs based on the multi-strategy threshold PGG is established, which is adaptively complemented by the diverse cooperation-defection strategy library and the utility function based on the threshold mechanism. Additionally, a multi-chain Markov is formulated to quantitatively describe the stochastic evolutionary dynamics, whose evolutionary stable distribution is theoretically derived through the development of a strategy update rule based on preference-based aspiration dynamic. Numerical simulation results validate the feasibility and effectiveness of the proposed method, and the impacts of selection intensity, preference degree and threshold on the evolutionary stable distribution are analyzed. Comparative simulations show that the proposed method outperforms GWO, DE, and NSGA-II, achieving 17.18% higher expected utility than NSGA-II and reducing evolutionary stable times by 25% in large-scale scenario.展开更多
A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on ...A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.展开更多
The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a nove...The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.展开更多
Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf...Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.展开更多
Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCA...Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCAV can carry different weapons to accomplish different combat missions. Choice of different weapons will have different effects on the final combat effectiveness. This work presents a mixed integer programming model for simultaneous weapon configuration and route planning of UCAVs, which solves the problem optimally using the IBM ILOG CPLEX optimizer for simple missions. This paper develops a heuristic algorithm to handle the medium-scale and large-scale problems. The experiments demonstrate the performance of the heuristic algorithm in solving the medium scale and large scale problems. Moreover, we give suggestions on how to select the most appropriate algorithm to solve different scale problems.展开更多
Unmanned air vehicles(UAVs) have been regularly employed in modern wars to conduct different missions. Instead of addressing mission planning and route planning separately,this study investigates the issue of joint mi...Unmanned air vehicles(UAVs) have been regularly employed in modern wars to conduct different missions. Instead of addressing mission planning and route planning separately,this study investigates the issue of joint mission and route planning for a fleet of UAVs. The mission planning determines the configuration of weapons in UAVs and the weapons to attack targets, while the route planning determines the UAV’s visiting sequence for the targets. The problem is formulated as an integer linear programming model. Due to the inefficiency of CPLEX on large scale optimization problems, an effective learningbased heuristic, namely, population based adaptive large neighborhood search(P-ALNS), is proposed to solve the model. In P-ALNS, seven neighborhood structures are designed and adaptively utilized in terms of their historical performance. The effectiveness and superiority of the proposed model and algorithm are demonstrated on test instances of small, medium and large sizes. In particular, P-ALNS achieves comparable solutions or as good as those of CPLEX on small-size(20 targets)instances in much shorter time.展开更多
Developing intelligent unmanned swarm systems(IUSSs)is a highly intricate process.Although current simulators and toolchains have made a notable contribution to the develop-ment of algorithms for IUSSs,they tend to co...Developing intelligent unmanned swarm systems(IUSSs)is a highly intricate process.Although current simulators and toolchains have made a notable contribution to the develop-ment of algorithms for IUSSs,they tend to concentrate on iso-lated technical elements and are deficient in addressing the full spectrum of critical technologies and development needs in a systematic and integrative manner.Furthermore,the current suite of tools has not adequately addressed the challenge of bridging the gap between simulation and real-world deployment of algorithms.Therefore,a comprehensive solution must be developed that encompasses the entire IUSS development life-cycle.In this study,we present the RflySim ToolChain,which has been developed with the specific aim of facilitating the rapid development and validation of IUSSs.The RflySim ToolChain employs a model-based design(MBD)approach,integrating a modeling and simulation module,a lower reliable control mo-dule,and an upper swarm decision-making module.This compre-hensive integration encompasses the entire process,from mo-deling and simulation to testing and deployment,thereby enabling users to rapidly construct and validate IUSSs.The prin-cipal advantages of the RflySim ToolChain are as follows:it pro-vides a comprehensive solution that meets the full-stack devel-opment needs of IUSSs;the highly modular architecture and comprehensive software development kit(SDK)facilitate the automation of the entire IUSS development process.Further-more,the high-fidelity model design and reliable architecture solution ensure a seamless transition from simulation to real-world deployment,which is known as the simulation to reality(Sim2Real)process.This paper presents a series of case stu-dies that illustrate the effectiveness of the RflySim ToolChain in supporting the research and application of IUSSs.展开更多
A task allocation problem for the heterogeneous unmanned aerial vehicle (UAV) swarm in unknown environments is studied in this paper.Considering that the actual mission environment information may be unknown,the UAV s...A task allocation problem for the heterogeneous unmanned aerial vehicle (UAV) swarm in unknown environments is studied in this paper.Considering that the actual mission environment information may be unknown,the UAV swarm needs to detect the environment first and then attack the detected targets.The heterogeneity of UAVs,multiple types of tasks,and the dynamic nature of task environment lead to uneven load and time sequence problems.This paper proposes an improved contract net protocol (CNP) based task allocation scheme,which effectively balances the load of UAVs and improves the task efficiency.Firstly,two types of task models are established,including regional reconnaissance tasks and target attack tasks.Secondly,for regional reconnaissance tasks,an improved CNP algorithm using the uncertain contract is developed.Through uncertain contracts,the area size of the regional reconnaissance task is determined adaptively after this task assignment,which can improve reconnaissance efficiency and resource utilization.Thirdly,for target attack tasks,an improved CNP algorithm using the fuzzy integrated evaluation and the double-layer negotiation is presented to enhance collaborative attack efficiency through adjusting the assignment sequence adaptively and multi-layer allocation.Finally,the effectiveness and advantages of the improved method are verified through comparison simulations.展开更多
This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,le...This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths.展开更多
To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.Fir...To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.展开更多
According to the characteristic of global positioning system(GPS) reflection signals,a GPS delay mapping receiver system scheme is put forward,which not only satisfies the unmanned aerial vehicle(UAV) guidance loc...According to the characteristic of global positioning system(GPS) reflection signals,a GPS delay mapping receiver system scheme is put forward,which not only satisfies the unmanned aerial vehicle(UAV) guidance localization but also realizes height measurement.A code delay algorithm is put forward,which processes the direct and land reflected signal and outputs the navigation data and specular point.The GPS terrain reflected echo signal mathematical equation is inferred.The reflecting signal area,when the GPS signal passes the land,is analyzed.The height survey model reflected land surface characteristic is established.A simulation system which carries guidance localization of the UAV and the height measuring control through the GPS direct signal and the land reflected signal is designed,taken the GPS satellite as the illumination source,the receiver is put on the UAV.Then the UAV guidance signal,the GPS reflection signal and receiver's parallel processing are realized.The parallel processing reduces UAV's payload and raises system's operating efficiency.The simulation results confirms the validity of the model and also provides the basis for the UAV's optimization design.展开更多
The main contribution of this paper is the design of an event-triggered formation control for leader-following consensus in second-order multi-agent systems(MASs)under communication faults.All the agents must follow t...The main contribution of this paper is the design of an event-triggered formation control for leader-following consensus in second-order multi-agent systems(MASs)under communication faults.All the agents must follow the trajectories of a virtual leader despite communication faults considered as smooth time-varying delays dependent on the distance between the agents.Linear matrix inequalities(LMIs)-based conditions are obtained to synthesize a controller gain that guarantees stability of the synchronization error.Based on the closed-loop system,an event-triggered mechanism is designed to reduce the control law update and information exchange in order to reduce energy consumption.The proposed approach is implemented in a real platform of a fleet of unmanned aerial vehicles(UAVs)under communication faults.A comparison between a state-of-the-art technique and the proposed technique has been provided,demonstrating the performance improvement brought by the proposed approach.展开更多
The network performance and the unmanned aerial vehicle(UAV)number are important objectives when UAVs are placed as communication relays to enhance the multi-agent information exchange.The problem is a non-determinist...The network performance and the unmanned aerial vehicle(UAV)number are important objectives when UAVs are placed as communication relays to enhance the multi-agent information exchange.The problem is a non-deterministic polynomial hard(NP-hard)multi-objective optimization problem,instead of generating a Pareto solution,this work focuses on considering both objectives at the same level so as to achieve a balanced solution between them.Based on the property that agents connected to the same UAV are a cluster,two clustering-based algorithms,M-K-means(MKM)and modified fast search and find density of peaks(MFSFDP)methods,are first proposed.Since the former algorithm requires too much computational time and the latter one requires too many relays,an algorithm for the balanced network performance and relay number(BPN)is proposed by discretizing the area to avoid missing the optimal relay positions and defining a new local density function to reflect the network performance metric.Simulation results demonstrate that the proposed algorithms are feasible and effective.Comparisons between these algorithms show that the BPN algorithm uses fewer relay UAVs than the MFSFDP and classic set-covering based algorithm,and its computational time is far less than the MKM algorithm.展开更多
Recently,unmanned aerial vehicle(UAV)-aided free-space optical(FSO)communication has attracted widespread attentions.However,most of the existing research focuses on communication performance only.The authors investig...Recently,unmanned aerial vehicle(UAV)-aided free-space optical(FSO)communication has attracted widespread attentions.However,most of the existing research focuses on communication performance only.The authors investigate the integrated scheduling of communication,sensing,and control for UAV-aided FSO communication systems.Initially,a sensing-control model is established via the control theory.Moreover,an FSO communication channel model is established by considering the effects of atmospheric loss,atmospheric turbulence,geometrical loss,and angle-of-arrival fluctuation.Then,the relationship between the motion control of the UAV and radial displacement is obtained to link the control aspect and communication aspect.Assuming that the base station has instantaneous channel state information(CSI)or statistical CSI,the thresholds of the sensing-control pattern activation are designed,respectively.Finally,an integrated scheduling scheme for performing communication,sensing,and control is proposed.Numerical results indicate that,compared with conventional time-triggered scheme,the proposed integrated scheduling scheme obtains comparable communication and control performance,but reduces the sensing consumed power by 52.46%.展开更多
基金supported by the National Natural Science Foundation of China (No. 62073267)。
文摘As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UAVs. Existing weapon-target assignment methods primarily focus on macro cluster constraints while neglecting individual strategy updates. This paper proposes a novel weapon-target assignment method for UAVs based on the multi-strategy threshold public goods game(PGG). By analyzing the concept mapping between weapon-target assignment for UAVs and multi-strategy threshold PGG, a weapon-target assignment model for UAVs based on the multi-strategy threshold PGG is established, which is adaptively complemented by the diverse cooperation-defection strategy library and the utility function based on the threshold mechanism. Additionally, a multi-chain Markov is formulated to quantitatively describe the stochastic evolutionary dynamics, whose evolutionary stable distribution is theoretically derived through the development of a strategy update rule based on preference-based aspiration dynamic. Numerical simulation results validate the feasibility and effectiveness of the proposed method, and the impacts of selection intensity, preference degree and threshold on the evolutionary stable distribution are analyzed. Comparative simulations show that the proposed method outperforms GWO, DE, and NSGA-II, achieving 17.18% higher expected utility than NSGA-II and reducing evolutionary stable times by 25% in large-scale scenario.
文摘A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.
基金Fundamental Research Funds for the Central Universities(2024JBZX038)National Natural Science F oundation of China(62076023)。
文摘The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324)。
文摘Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.
基金supported by the National Natural Science Foundation of China(7147117571471174)
文摘Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCAV can carry different weapons to accomplish different combat missions. Choice of different weapons will have different effects on the final combat effectiveness. This work presents a mixed integer programming model for simultaneous weapon configuration and route planning of UCAVs, which solves the problem optimally using the IBM ILOG CPLEX optimizer for simple missions. This paper develops a heuristic algorithm to handle the medium-scale and large-scale problems. The experiments demonstrate the performance of the heuristic algorithm in solving the medium scale and large scale problems. Moreover, we give suggestions on how to select the most appropriate algorithm to solve different scale problems.
基金supportes by the National Nature Science Foundation o f China (71771215,62122093)。
文摘Unmanned air vehicles(UAVs) have been regularly employed in modern wars to conduct different missions. Instead of addressing mission planning and route planning separately,this study investigates the issue of joint mission and route planning for a fleet of UAVs. The mission planning determines the configuration of weapons in UAVs and the weapons to attack targets, while the route planning determines the UAV’s visiting sequence for the targets. The problem is formulated as an integer linear programming model. Due to the inefficiency of CPLEX on large scale optimization problems, an effective learningbased heuristic, namely, population based adaptive large neighborhood search(P-ALNS), is proposed to solve the model. In P-ALNS, seven neighborhood structures are designed and adaptively utilized in terms of their historical performance. The effectiveness and superiority of the proposed model and algorithm are demonstrated on test instances of small, medium and large sizes. In particular, P-ALNS achieves comparable solutions or as good as those of CPLEX on small-size(20 targets)instances in much shorter time.
基金supported by the National Natural Science Foundation of China(62406345).
文摘Developing intelligent unmanned swarm systems(IUSSs)is a highly intricate process.Although current simulators and toolchains have made a notable contribution to the develop-ment of algorithms for IUSSs,they tend to concentrate on iso-lated technical elements and are deficient in addressing the full spectrum of critical technologies and development needs in a systematic and integrative manner.Furthermore,the current suite of tools has not adequately addressed the challenge of bridging the gap between simulation and real-world deployment of algorithms.Therefore,a comprehensive solution must be developed that encompasses the entire IUSS development life-cycle.In this study,we present the RflySim ToolChain,which has been developed with the specific aim of facilitating the rapid development and validation of IUSSs.The RflySim ToolChain employs a model-based design(MBD)approach,integrating a modeling and simulation module,a lower reliable control mo-dule,and an upper swarm decision-making module.This compre-hensive integration encompasses the entire process,from mo-deling and simulation to testing and deployment,thereby enabling users to rapidly construct and validate IUSSs.The prin-cipal advantages of the RflySim ToolChain are as follows:it pro-vides a comprehensive solution that meets the full-stack devel-opment needs of IUSSs;the highly modular architecture and comprehensive software development kit(SDK)facilitate the automation of the entire IUSS development process.Further-more,the high-fidelity model design and reliable architecture solution ensure a seamless transition from simulation to real-world deployment,which is known as the simulation to reality(Sim2Real)process.This paper presents a series of case stu-dies that illustrate the effectiveness of the RflySim ToolChain in supporting the research and application of IUSSs.
基金National Natural Science Foundation of China (12202293)Sichuan Science and Technology Program (2023NSFSC0393,2022NSFSC1952)。
文摘A task allocation problem for the heterogeneous unmanned aerial vehicle (UAV) swarm in unknown environments is studied in this paper.Considering that the actual mission environment information may be unknown,the UAV swarm needs to detect the environment first and then attack the detected targets.The heterogeneity of UAVs,multiple types of tasks,and the dynamic nature of task environment lead to uneven load and time sequence problems.This paper proposes an improved contract net protocol (CNP) based task allocation scheme,which effectively balances the load of UAVs and improves the task efficiency.Firstly,two types of task models are established,including regional reconnaissance tasks and target attack tasks.Secondly,for regional reconnaissance tasks,an improved CNP algorithm using the uncertain contract is developed.Through uncertain contracts,the area size of the regional reconnaissance task is determined adaptively after this task assignment,which can improve reconnaissance efficiency and resource utilization.Thirdly,for target attack tasks,an improved CNP algorithm using the fuzzy integrated evaluation and the double-layer negotiation is presented to enhance collaborative attack efficiency through adjusting the assignment sequence adaptively and multi-layer allocation.Finally,the effectiveness and advantages of the improved method are verified through comparison simulations.
基金supported by the National Natural Science Foundation of China(6167321461673217+2 种基金61673219)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(18KJB120011)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX19_0299)
文摘This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths.
基金Project(60925011) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(9140A06040510BQXXXX) supported by Advanced Research Foundation of General Armament Department,China
文摘To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.
基金supported by the National High Technology Researchand Development Program of China(863 Program)(2008AA12A216)
文摘According to the characteristic of global positioning system(GPS) reflection signals,a GPS delay mapping receiver system scheme is put forward,which not only satisfies the unmanned aerial vehicle(UAV) guidance localization but also realizes height measurement.A code delay algorithm is put forward,which processes the direct and land reflected signal and outputs the navigation data and specular point.The GPS terrain reflected echo signal mathematical equation is inferred.The reflecting signal area,when the GPS signal passes the land,is analyzed.The height survey model reflected land surface characteristic is established.A simulation system which carries guidance localization of the UAV and the height measuring control through the GPS direct signal and the land reflected signal is designed,taken the GPS satellite as the illumination source,the receiver is put on the UAV.Then the UAV guidance signal,the GPS reflection signal and receiver's parallel processing are realized.The parallel processing reduces UAV's payload and raises system's operating efficiency.The simulation results confirms the validity of the model and also provides the basis for the UAV's optimization design.
文摘The main contribution of this paper is the design of an event-triggered formation control for leader-following consensus in second-order multi-agent systems(MASs)under communication faults.All the agents must follow the trajectories of a virtual leader despite communication faults considered as smooth time-varying delays dependent on the distance between the agents.Linear matrix inequalities(LMIs)-based conditions are obtained to synthesize a controller gain that guarantees stability of the synchronization error.Based on the closed-loop system,an event-triggered mechanism is designed to reduce the control law update and information exchange in order to reduce energy consumption.The proposed approach is implemented in a real platform of a fleet of unmanned aerial vehicles(UAVs)under communication faults.A comparison between a state-of-the-art technique and the proposed technique has been provided,demonstrating the performance improvement brought by the proposed approach.
基金the National Natural Science Foundation of China(61573285)。
文摘The network performance and the unmanned aerial vehicle(UAV)number are important objectives when UAVs are placed as communication relays to enhance the multi-agent information exchange.The problem is a non-deterministic polynomial hard(NP-hard)multi-objective optimization problem,instead of generating a Pareto solution,this work focuses on considering both objectives at the same level so as to achieve a balanced solution between them.Based on the property that agents connected to the same UAV are a cluster,two clustering-based algorithms,M-K-means(MKM)and modified fast search and find density of peaks(MFSFDP)methods,are first proposed.Since the former algorithm requires too much computational time and the latter one requires too many relays,an algorithm for the balanced network performance and relay number(BPN)is proposed by discretizing the area to avoid missing the optimal relay positions and defining a new local density function to reflect the network performance metric.Simulation results demonstrate that the proposed algorithms are feasible and effective.Comparisons between these algorithms show that the BPN algorithm uses fewer relay UAVs than the MFSFDP and classic set-covering based algorithm,and its computational time is far less than the MKM algorithm.
文摘Recently,unmanned aerial vehicle(UAV)-aided free-space optical(FSO)communication has attracted widespread attentions.However,most of the existing research focuses on communication performance only.The authors investigate the integrated scheduling of communication,sensing,and control for UAV-aided FSO communication systems.Initially,a sensing-control model is established via the control theory.Moreover,an FSO communication channel model is established by considering the effects of atmospheric loss,atmospheric turbulence,geometrical loss,and angle-of-arrival fluctuation.Then,the relationship between the motion control of the UAV and radial displacement is obtained to link the control aspect and communication aspect.Assuming that the base station has instantaneous channel state information(CSI)or statistical CSI,the thresholds of the sensing-control pattern activation are designed,respectively.Finally,an integrated scheduling scheme for performing communication,sensing,and control is proposed.Numerical results indicate that,compared with conventional time-triggered scheme,the proposed integrated scheduling scheme obtains comparable communication and control performance,but reduces the sensing consumed power by 52.46%.