This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only b...This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.展开更多
Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable track...Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system.展开更多
Developing intelligent unmanned swarm systems(IUSSs)is a highly intricate process.Although current simulators and toolchains have made a notable contribution to the develop-ment of algorithms for IUSSs,they tend to co...Developing intelligent unmanned swarm systems(IUSSs)is a highly intricate process.Although current simulators and toolchains have made a notable contribution to the develop-ment of algorithms for IUSSs,they tend to concentrate on iso-lated technical elements and are deficient in addressing the full spectrum of critical technologies and development needs in a systematic and integrative manner.Furthermore,the current suite of tools has not adequately addressed the challenge of bridging the gap between simulation and real-world deployment of algorithms.Therefore,a comprehensive solution must be developed that encompasses the entire IUSS development life-cycle.In this study,we present the RflySim ToolChain,which has been developed with the specific aim of facilitating the rapid development and validation of IUSSs.The RflySim ToolChain employs a model-based design(MBD)approach,integrating a modeling and simulation module,a lower reliable control mo-dule,and an upper swarm decision-making module.This compre-hensive integration encompasses the entire process,from mo-deling and simulation to testing and deployment,thereby enabling users to rapidly construct and validate IUSSs.The prin-cipal advantages of the RflySim ToolChain are as follows:it pro-vides a comprehensive solution that meets the full-stack devel-opment needs of IUSSs;the highly modular architecture and comprehensive software development kit(SDK)facilitate the automation of the entire IUSS development process.Further-more,the high-fidelity model design and reliable architecture solution ensure a seamless transition from simulation to real-world deployment,which is known as the simulation to reality(Sim2Real)process.This paper presents a series of case stu-dies that illustrate the effectiveness of the RflySim ToolChain in supporting the research and application of IUSSs.展开更多
The exploration of unmanned aerial vehicle(UAV)swarm systems represents a focal point in the research of multiagent systems,with the investigation of their fission-fusion behavior holding significant theoretical and p...The exploration of unmanned aerial vehicle(UAV)swarm systems represents a focal point in the research of multiagent systems,with the investigation of their fission-fusion behavior holding significant theoretical and practical value.This review systematically examines the methods for fission-fusion of UAV swarms from the perspective of multi-agent systems,encompassing the composition of UAV swarm systems and fission-fusion conditions,information interaction mechanisms,and existing fission-fusion approaches.Firstly,considering the constituent units of UAV swarms and the conditions influencing fission-fusion,this paper categorizes and introduces the UAV swarm systems.It further examines the effects and limitations of fission-fusion methods across various categories and conditions.Secondly,a comprehensive analysis of the prevalent information interaction mechanisms within UAV swarms is conducted from the perspective of information interaction structures.The advantages and limitations of various mechanisms in the context of fission-fusion behaviors are summarized and synthesized.Thirdly,this paper consolidates the existing implementation research findings related to the fission-fusion behavior of UAV swarms,identifies unresolved issues in fission-fusion research,and discusses potential solutions.Finally,the paper concludes with a comprehensive summary and systematically outlines future research opportunities.展开更多
When performing tasks,unmanned clusters often face a variety of strategy choices.One of the key issues in unmanned cluster tasks is the method through which to design autonomous collaboration and cooperative evolution...When performing tasks,unmanned clusters often face a variety of strategy choices.One of the key issues in unmanned cluster tasks is the method through which to design autonomous collaboration and cooperative evolution mechanisms that allow for unmanned clusters to maximize their overall task effective-ness under the condition of strategic diversity.This paper ana-lyzes these task requirements from three perspectives:the diver-sity of the decision space,information network construction,and the autonomous collaboration mechanism.Then,this paper pro-poses a method for solving the problem of strategy selection diversity under two network structures.Next,this paper presents a Moran-rule-based evolution dynamics model for unmanned cluster strategies and a vision-driven-mechanism-based evolu-tion dynamics model for unmanned cluster strategy in the con-text of strategy selection diversity according to various unmanned cluster application scenarios.Finally,this paper pro-vides a simulation analysis of the effects of relevant parameters such as the payoff factor and cluster size on cooperative evolu-tion in autonomous cluster collaboration for the two types of models.On this basis,this paper presents advice for effectively addressing diverse choices in unmanned cluster tasks,thereby providing decision support for practical applications of unmanned cluster tasks.展开更多
As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UA...As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UAVs. Existing weapon-target assignment methods primarily focus on macro cluster constraints while neglecting individual strategy updates. This paper proposes a novel weapon-target assignment method for UAVs based on the multi-strategy threshold public goods game(PGG). By analyzing the concept mapping between weapon-target assignment for UAVs and multi-strategy threshold PGG, a weapon-target assignment model for UAVs based on the multi-strategy threshold PGG is established, which is adaptively complemented by the diverse cooperation-defection strategy library and the utility function based on the threshold mechanism. Additionally, a multi-chain Markov is formulated to quantitatively describe the stochastic evolutionary dynamics, whose evolutionary stable distribution is theoretically derived through the development of a strategy update rule based on preference-based aspiration dynamic. Numerical simulation results validate the feasibility and effectiveness of the proposed method, and the impacts of selection intensity, preference degree and threshold on the evolutionary stable distribution are analyzed. Comparative simulations show that the proposed method outperforms GWO, DE, and NSGA-II, achieving 17.18% higher expected utility than NSGA-II and reducing evolutionary stable times by 25% in large-scale scenario.展开更多
Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and miss...Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and mission trajectory planning method is proposed to meet the requirements of cross-domain unmanned swarm mission planning.Firstly,the different performances of cross-domain heterogeneous platforms and mission requirements of targets are characterised by using a collection of operational resources.Secondly,an algorithmic framework for joint target assignment and mission trajectory planning is proposed,in which the initial planning of the trajectory is performed in the target assignment phase,while the trajectory is further optimised afterwards.Next,the estimation of the distribution algorithms is combined with the genetic algorithm to solve the objective function.Finally,the algorithm is numerically simulated by specific cases.Simulation results indicate that the proposed algorithm can perform effective task assignment and trajectory planning for cross-domain unmanned swarms.Furthermore,the solution performance of the hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)algorithm is better than that of GA and EDA.展开更多
A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on ...A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.展开更多
As the unmanned weap system-of systems(UWSoS)becomes complex,the inevitable uncertain interference gradu-ally increases,which leads to a strong emphasis on the resilience of UWSoS.Hence,this paper presents a resilienc...As the unmanned weap system-of systems(UWSoS)becomes complex,the inevitable uncertain interference gradu-ally increases,which leads to a strong emphasis on the resilience of UWSoS.Hence,this paper presents a resilience-driven cooperative reconfiguration strategy to enhance the resilience of UWSoS.First,a unified resilience-driven coopera-tive reconfiguration strategy framework is designed to guide the UWSoS resilience enhancement.Subsequently,a cooperative reconfiguration strategy algorithm is proposed to identify the optimal cooperative reconfiguration sequence,combining the cooperative pair resilience contribution index(CPRCI)and coop-erative pair importance index(CPII).At last,the effectiveness and superiority of the proposed algorithm are demonstrated through various attack scenario simulations that include differ-ent attack modes and intensities.The analysis results can pro-vide a reference for decision-makers to manage UWSoS.展开更多
Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf...Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.展开更多
This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,le...This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths.展开更多
The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturban...The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturbance, etc. By introducing the reference, trajectory was generated by a virtual USV, and the error equation of trajectory tracking for USV was obtained, which transformed the tracking problem of underactuated USV into the stabilization problem of the trajectory tracking error equation. A backstepping adaptive sliding mode controller was proposed based on backstepping technology and method of dynamic slide model control. By means of theoretical analysis, it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property. Simulation results are presented to illustrate the effectiveness of the proposed controller.展开更多
The trajectory planning and tracking control for an underactuated unmanned surface vessel(USV) were addressed.The reference trajectory was generated by a virtual USV,and the error equation of trajectory tracking for u...The trajectory planning and tracking control for an underactuated unmanned surface vessel(USV) were addressed.The reference trajectory was generated by a virtual USV,and the error equation of trajectory tracking for underactuated USV was obtained,which transformed the tracking and stabilization problem of underactuated USV into the stabilization problem of the trajectory tracking error equation.A nonlinear state feedback controller was proposed based on backstepping technique and Lyapunov's direct method.By means of Lyapunov analysis,it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property.Numerical simulation results are presented to validate the effectiveness and robustness of the proposed controller.展开更多
The concept of unmanned weapon system-of-systems(UWSoS)involves a collection of various unmanned systems to achieve or accomplish a specific goal or mission.The mission reliability of UWSoS is represented by its abili...The concept of unmanned weapon system-of-systems(UWSoS)involves a collection of various unmanned systems to achieve or accomplish a specific goal or mission.The mission reliability of UWSoS is represented by its ability to finish a required mission above the baselines of a given mission.However,issues with heterogeneity,cooperation between systems,and the emergence of UWSoS cannot be effectively solved by traditional system reliability methods.This study proposes an effective operation-loop-based mission reliability evaluation method for UWSoS by analyzing dynamic reconfiguration.First,we present a new connotation of an effective operation loop by considering the allocation of operational entities and physical resource constraints.Then,we propose an effective operationloop-based mission reliability model for a heterogeneous UWSoS according to the mission baseline.Moreover,a mission reliability evaluation algorithm is proposed under random external shocks and topology reconfiguration,revealing the evolution law of the effective operation loop and mission reliability.Finally,a typical 60-unmanned-aerial-vehicle-swarm is taken as an example to demonstrate the proposed models and methods.The mission reliability is achieved by considering external shocks,which can serve as a reference for evaluating and improving the effectiveness of UWSoS.展开更多
Wave driven unmanned surface vehicle(WUSV) is a new concept ocean robot drived by wave energy and solar energy,and it is very suitable for the vast ocean observations with incomparable endurance.Its dynamic modeling i...Wave driven unmanned surface vehicle(WUSV) is a new concept ocean robot drived by wave energy and solar energy,and it is very suitable for the vast ocean observations with incomparable endurance.Its dynamic modeling is very important because it is the theoretical foundation for further study in the WUSV motion control and efficiency analysis.In this work,the multibody system of WUSV was described based on D-H approach.Then,the driving principle was analyzed and the dynamic model of WUSV in longitudinal profile is established by Lagrangian mechanics.Finally,the motion simulation of WUSV and comparative analysis are completed by setting different inputs of sea state.Simulation results show that the WUSV dynamic model can correctly reflect the WUSV longitudinal motion process,and the results are consistent with the wave theory.展开更多
To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.Fir...To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.展开更多
The main contribution of this paper is the design of an event-triggered formation control for leader-following consensus in second-order multi-agent systems(MASs)under communication faults.All the agents must follow t...The main contribution of this paper is the design of an event-triggered formation control for leader-following consensus in second-order multi-agent systems(MASs)under communication faults.All the agents must follow the trajectories of a virtual leader despite communication faults considered as smooth time-varying delays dependent on the distance between the agents.Linear matrix inequalities(LMIs)-based conditions are obtained to synthesize a controller gain that guarantees stability of the synchronization error.Based on the closed-loop system,an event-triggered mechanism is designed to reduce the control law update and information exchange in order to reduce energy consumption.The proposed approach is implemented in a real platform of a fleet of unmanned aerial vehicles(UAVs)under communication faults.A comparison between a state-of-the-art technique and the proposed technique has been provided,demonstrating the performance improvement brought by the proposed approach.展开更多
A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. T...A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. The proposed control system combined great advantages of generalized indirect adaptive sliding mode control(IASMC) and fuzzy control for the UFVs. An on-line adaptive tuning algorithm based on Lyapunov function and Barbalat lemma was designed, thus the stability of the system can be guaranteed. The chattering phenomenon in the sliding mode control was reduced and the steady error was also alleviated. The numerical results, for an underactuated quadcopter and a high speed underwater vehicle as case studies, indicate that the presented adaptive design of fuzzy sliding mode controller performs robustly in the presence of sensor noise and external disturbances. In addition, online unknown parameter estimation of the UFVs, such as ground effect and planing force especially in the cases with the Gaussian sensor noise with zero mean and standard deviation of 0.5 m and 0.1 rad and external disturbances with amplitude of 0.1 m/s2 and frequency of 0.2 Hz, is one of the advantages of this method. These estimated parameters are then used in the controller to improve the trajectory tracking performance.展开更多
Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCA...Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCAV can carry different weapons to accomplish different combat missions. Choice of different weapons will have different effects on the final combat effectiveness. This work presents a mixed integer programming model for simultaneous weapon configuration and route planning of UCAVs, which solves the problem optimally using the IBM ILOG CPLEX optimizer for simple missions. This paper develops a heuristic algorithm to handle the medium-scale and large-scale problems. The experiments demonstrate the performance of the heuristic algorithm in solving the medium scale and large scale problems. Moreover, we give suggestions on how to select the most appropriate algorithm to solve different scale problems.展开更多
The network performance and the unmanned aerial vehicle(UAV)number are important objectives when UAVs are placed as communication relays to enhance the multi-agent information exchange.The problem is a non-determinist...The network performance and the unmanned aerial vehicle(UAV)number are important objectives when UAVs are placed as communication relays to enhance the multi-agent information exchange.The problem is a non-deterministic polynomial hard(NP-hard)multi-objective optimization problem,instead of generating a Pareto solution,this work focuses on considering both objectives at the same level so as to achieve a balanced solution between them.Based on the property that agents connected to the same UAV are a cluster,two clustering-based algorithms,M-K-means(MKM)and modified fast search and find density of peaks(MFSFDP)methods,are first proposed.Since the former algorithm requires too much computational time and the latter one requires too many relays,an algorithm for the balanced network performance and relay number(BPN)is proposed by discretizing the area to avoid missing the optimal relay positions and defining a new local density function to reflect the network performance metric.Simulation results demonstrate that the proposed algorithms are feasible and effective.Comparisons between these algorithms show that the BPN algorithm uses fewer relay UAVs than the MFSFDP and classic set-covering based algorithm,and its computational time is far less than the MKM algorithm.展开更多
文摘This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.
基金financial support provided by the Natural Science Foundation of Hunan Province of China(Grant No.2021JJ10045)the Open Research Subject of State Key Laboratory of Intelligent Game(Grant No.ZBKF-24-01)+1 种基金the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20240989)the China Postdoctoral Science Foundation(Grant No.2024M754304)。
文摘Unmanned aerial vehicles(UAVs)have become crucial tools in moving target tracking due to their agility and ability to operate in complex,dynamic environments.UAVs must meet several requirements to achieve stable tracking,including maintaining continuous target visibility amidst occlusions,ensuring flight safety,and achieving smooth trajectory planning.This paper reviews the latest advancements in UAV-based target tracking,highlighting information prediction,tracking strategies,and swarm cooperation.To address challenges including target visibility and occlusion,real-time prediction and tracking in dynamic environments,flight safety and coordination,resource management and energy efficiency,the paper identifies future research directions aimed at improving the performance,reliability,and scalability of UAV tracking system.
基金supported by the National Natural Science Foundation of China(62406345).
文摘Developing intelligent unmanned swarm systems(IUSSs)is a highly intricate process.Although current simulators and toolchains have made a notable contribution to the develop-ment of algorithms for IUSSs,they tend to concentrate on iso-lated technical elements and are deficient in addressing the full spectrum of critical technologies and development needs in a systematic and integrative manner.Furthermore,the current suite of tools has not adequately addressed the challenge of bridging the gap between simulation and real-world deployment of algorithms.Therefore,a comprehensive solution must be developed that encompasses the entire IUSS development life-cycle.In this study,we present the RflySim ToolChain,which has been developed with the specific aim of facilitating the rapid development and validation of IUSSs.The RflySim ToolChain employs a model-based design(MBD)approach,integrating a modeling and simulation module,a lower reliable control mo-dule,and an upper swarm decision-making module.This compre-hensive integration encompasses the entire process,from mo-deling and simulation to testing and deployment,thereby enabling users to rapidly construct and validate IUSSs.The prin-cipal advantages of the RflySim ToolChain are as follows:it pro-vides a comprehensive solution that meets the full-stack devel-opment needs of IUSSs;the highly modular architecture and comprehensive software development kit(SDK)facilitate the automation of the entire IUSS development process.Further-more,the high-fidelity model design and reliable architecture solution ensure a seamless transition from simulation to real-world deployment,which is known as the simulation to reality(Sim2Real)process.This paper presents a series of case stu-dies that illustrate the effectiveness of the RflySim ToolChain in supporting the research and application of IUSSs.
基金supported by the National Natural Science Foundation of China(U20B2042).
文摘The exploration of unmanned aerial vehicle(UAV)swarm systems represents a focal point in the research of multiagent systems,with the investigation of their fission-fusion behavior holding significant theoretical and practical value.This review systematically examines the methods for fission-fusion of UAV swarms from the perspective of multi-agent systems,encompassing the composition of UAV swarm systems and fission-fusion conditions,information interaction mechanisms,and existing fission-fusion approaches.Firstly,considering the constituent units of UAV swarms and the conditions influencing fission-fusion,this paper categorizes and introduces the UAV swarm systems.It further examines the effects and limitations of fission-fusion methods across various categories and conditions.Secondly,a comprehensive analysis of the prevalent information interaction mechanisms within UAV swarms is conducted from the perspective of information interaction structures.The advantages and limitations of various mechanisms in the context of fission-fusion behaviors are summarized and synthesized.Thirdly,this paper consolidates the existing implementation research findings related to the fission-fusion behavior of UAV swarms,identifies unresolved issues in fission-fusion research,and discusses potential solutions.Finally,the paper concludes with a comprehensive summary and systematically outlines future research opportunities.
基金supported by the National Natural Science Foundation of China(72471240).
文摘When performing tasks,unmanned clusters often face a variety of strategy choices.One of the key issues in unmanned cluster tasks is the method through which to design autonomous collaboration and cooperative evolution mechanisms that allow for unmanned clusters to maximize their overall task effective-ness under the condition of strategic diversity.This paper ana-lyzes these task requirements from three perspectives:the diver-sity of the decision space,information network construction,and the autonomous collaboration mechanism.Then,this paper pro-poses a method for solving the problem of strategy selection diversity under two network structures.Next,this paper presents a Moran-rule-based evolution dynamics model for unmanned cluster strategies and a vision-driven-mechanism-based evolu-tion dynamics model for unmanned cluster strategy in the con-text of strategy selection diversity according to various unmanned cluster application scenarios.Finally,this paper pro-vides a simulation analysis of the effects of relevant parameters such as the payoff factor and cluster size on cooperative evolu-tion in autonomous cluster collaboration for the two types of models.On this basis,this paper presents advice for effectively addressing diverse choices in unmanned cluster tasks,thereby providing decision support for practical applications of unmanned cluster tasks.
基金supported by the National Natural Science Foundation of China (No. 62073267)。
文摘As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UAVs. Existing weapon-target assignment methods primarily focus on macro cluster constraints while neglecting individual strategy updates. This paper proposes a novel weapon-target assignment method for UAVs based on the multi-strategy threshold public goods game(PGG). By analyzing the concept mapping between weapon-target assignment for UAVs and multi-strategy threshold PGG, a weapon-target assignment model for UAVs based on the multi-strategy threshold PGG is established, which is adaptively complemented by the diverse cooperation-defection strategy library and the utility function based on the threshold mechanism. Additionally, a multi-chain Markov is formulated to quantitatively describe the stochastic evolutionary dynamics, whose evolutionary stable distribution is theoretically derived through the development of a strategy update rule based on preference-based aspiration dynamic. Numerical simulation results validate the feasibility and effectiveness of the proposed method, and the impacts of selection intensity, preference degree and threshold on the evolutionary stable distribution are analyzed. Comparative simulations show that the proposed method outperforms GWO, DE, and NSGA-II, achieving 17.18% higher expected utility than NSGA-II and reducing evolutionary stable times by 25% in large-scale scenario.
文摘Compared with single-domain unmanned swarms,cross-domain unmanned swarms continue to face new challenges in terms of platform performance and constraints.In this paper,a joint unmanned swarm target assignment and mission trajectory planning method is proposed to meet the requirements of cross-domain unmanned swarm mission planning.Firstly,the different performances of cross-domain heterogeneous platforms and mission requirements of targets are characterised by using a collection of operational resources.Secondly,an algorithmic framework for joint target assignment and mission trajectory planning is proposed,in which the initial planning of the trajectory is performed in the target assignment phase,while the trajectory is further optimised afterwards.Next,the estimation of the distribution algorithms is combined with the genetic algorithm to solve the objective function.Finally,the algorithm is numerically simulated by specific cases.Simulation results indicate that the proposed algorithm can perform effective task assignment and trajectory planning for cross-domain unmanned swarms.Furthermore,the solution performance of the hybrid estimation of distribution algorithm(EDA)-genetic algorithm(GA)algorithm is better than that of GA and EDA.
文摘A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section.
基金This work was supported by Ph.D.Intelligent Innovation Foundation Project(201-CXCY-A01-08-19-01)Science and Technology on Information System Engineering Laboratory(05202007).
文摘As the unmanned weap system-of systems(UWSoS)becomes complex,the inevitable uncertain interference gradu-ally increases,which leads to a strong emphasis on the resilience of UWSoS.Hence,this paper presents a resilience-driven cooperative reconfiguration strategy to enhance the resilience of UWSoS.First,a unified resilience-driven coopera-tive reconfiguration strategy framework is designed to guide the UWSoS resilience enhancement.Subsequently,a cooperative reconfiguration strategy algorithm is proposed to identify the optimal cooperative reconfiguration sequence,combining the cooperative pair resilience contribution index(CPRCI)and coop-erative pair importance index(CPII).At last,the effectiveness and superiority of the proposed algorithm are demonstrated through various attack scenario simulations that include differ-ent attack modes and intensities.The analysis results can pro-vide a reference for decision-makers to manage UWSoS.
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324)。
文摘Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.
基金supported by the National Natural Science Foundation of China(6167321461673217+2 种基金61673219)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(18KJB120011)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX19_0299)
文摘This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths.
基金Project(51409061)supported by the National Natural Science Foundation of ChinaProject(2013M540271)supported by China Postdoctoral Science Foundation+1 种基金Project(LBH-Z13055)Supported by Heilongjiang Postdoctoral Financial Assistance,ChinaProject(HEUCFD1403)supported by Basic Research Foundation of Central Universities,China
文摘The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturbance, etc. By introducing the reference, trajectory was generated by a virtual USV, and the error equation of trajectory tracking for USV was obtained, which transformed the tracking problem of underactuated USV into the stabilization problem of the trajectory tracking error equation. A backstepping adaptive sliding mode controller was proposed based on backstepping technology and method of dynamic slide model control. By means of theoretical analysis, it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property. Simulation results are presented to illustrate the effectiveness of the proposed controller.
基金Project(2013M540271)supported by the Postdoctoral Science Foundation of ChinaProject(HEUCF1321003)support by the Basic Research Foundation of Central University,ChinaProject(51209050)supported by the National Natural Science Foundation of China
文摘The trajectory planning and tracking control for an underactuated unmanned surface vessel(USV) were addressed.The reference trajectory was generated by a virtual USV,and the error equation of trajectory tracking for underactuated USV was obtained,which transformed the tracking and stabilization problem of underactuated USV into the stabilization problem of the trajectory tracking error equation.A nonlinear state feedback controller was proposed based on backstepping technique and Lyapunov's direct method.By means of Lyapunov analysis,it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property.Numerical simulation results are presented to validate the effectiveness and robustness of the proposed controller.
基金supported by the National Natural Science Foundation of China(72101270,72001213).
文摘The concept of unmanned weapon system-of-systems(UWSoS)involves a collection of various unmanned systems to achieve or accomplish a specific goal or mission.The mission reliability of UWSoS is represented by its ability to finish a required mission above the baselines of a given mission.However,issues with heterogeneity,cooperation between systems,and the emergence of UWSoS cannot be effectively solved by traditional system reliability methods.This study proposes an effective operation-loop-based mission reliability evaluation method for UWSoS by analyzing dynamic reconfiguration.First,we present a new connotation of an effective operation loop by considering the allocation of operational entities and physical resource constraints.Then,we propose an effective operationloop-based mission reliability model for a heterogeneous UWSoS according to the mission baseline.Moreover,a mission reliability evaluation algorithm is proposed under random external shocks and topology reconfiguration,revealing the evolution law of the effective operation loop and mission reliability.Finally,a typical 60-unmanned-aerial-vehicle-swarm is taken as an example to demonstrate the proposed models and methods.The mission reliability is achieved by considering external shocks,which can serve as a reference for evaluating and improving the effectiveness of UWSoS.
基金Project(2012-Z05)supported by the State Key Laboratory of Robotics,ChinaProjects(61233013,51179183)supported by the National Natural Science Foundation of China
文摘Wave driven unmanned surface vehicle(WUSV) is a new concept ocean robot drived by wave energy and solar energy,and it is very suitable for the vast ocean observations with incomparable endurance.Its dynamic modeling is very important because it is the theoretical foundation for further study in the WUSV motion control and efficiency analysis.In this work,the multibody system of WUSV was described based on D-H approach.Then,the driving principle was analyzed and the dynamic model of WUSV in longitudinal profile is established by Lagrangian mechanics.Finally,the motion simulation of WUSV and comparative analysis are completed by setting different inputs of sea state.Simulation results show that the WUSV dynamic model can correctly reflect the WUSV longitudinal motion process,and the results are consistent with the wave theory.
基金Project(60925011) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(9140A06040510BQXXXX) supported by Advanced Research Foundation of General Armament Department,China
文摘To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.
文摘The main contribution of this paper is the design of an event-triggered formation control for leader-following consensus in second-order multi-agent systems(MASs)under communication faults.All the agents must follow the trajectories of a virtual leader despite communication faults considered as smooth time-varying delays dependent on the distance between the agents.Linear matrix inequalities(LMIs)-based conditions are obtained to synthesize a controller gain that guarantees stability of the synchronization error.Based on the closed-loop system,an event-triggered mechanism is designed to reduce the control law update and information exchange in order to reduce energy consumption.The proposed approach is implemented in a real platform of a fleet of unmanned aerial vehicles(UAVs)under communication faults.A comparison between a state-of-the-art technique and the proposed technique has been provided,demonstrating the performance improvement brought by the proposed approach.
文摘A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles(UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. The proposed control system combined great advantages of generalized indirect adaptive sliding mode control(IASMC) and fuzzy control for the UFVs. An on-line adaptive tuning algorithm based on Lyapunov function and Barbalat lemma was designed, thus the stability of the system can be guaranteed. The chattering phenomenon in the sliding mode control was reduced and the steady error was also alleviated. The numerical results, for an underactuated quadcopter and a high speed underwater vehicle as case studies, indicate that the presented adaptive design of fuzzy sliding mode controller performs robustly in the presence of sensor noise and external disturbances. In addition, online unknown parameter estimation of the UFVs, such as ground effect and planing force especially in the cases with the Gaussian sensor noise with zero mean and standard deviation of 0.5 m and 0.1 rad and external disturbances with amplitude of 0.1 m/s2 and frequency of 0.2 Hz, is one of the advantages of this method. These estimated parameters are then used in the controller to improve the trajectory tracking performance.
基金supported by the National Natural Science Foundation of China(7147117571471174)
文摘Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCAV can carry different weapons to accomplish different combat missions. Choice of different weapons will have different effects on the final combat effectiveness. This work presents a mixed integer programming model for simultaneous weapon configuration and route planning of UCAVs, which solves the problem optimally using the IBM ILOG CPLEX optimizer for simple missions. This paper develops a heuristic algorithm to handle the medium-scale and large-scale problems. The experiments demonstrate the performance of the heuristic algorithm in solving the medium scale and large scale problems. Moreover, we give suggestions on how to select the most appropriate algorithm to solve different scale problems.
基金the National Natural Science Foundation of China(61573285)。
文摘The network performance and the unmanned aerial vehicle(UAV)number are important objectives when UAVs are placed as communication relays to enhance the multi-agent information exchange.The problem is a non-deterministic polynomial hard(NP-hard)multi-objective optimization problem,instead of generating a Pareto solution,this work focuses on considering both objectives at the same level so as to achieve a balanced solution between them.Based on the property that agents connected to the same UAV are a cluster,two clustering-based algorithms,M-K-means(MKM)and modified fast search and find density of peaks(MFSFDP)methods,are first proposed.Since the former algorithm requires too much computational time and the latter one requires too many relays,an algorithm for the balanced network performance and relay number(BPN)is proposed by discretizing the area to avoid missing the optimal relay positions and defining a new local density function to reflect the network performance metric.Simulation results demonstrate that the proposed algorithms are feasible and effective.Comparisons between these algorithms show that the BPN algorithm uses fewer relay UAVs than the MFSFDP and classic set-covering based algorithm,and its computational time is far less than the MKM algorithm.