A design scheme of adaptive fuzzy controller for a class of uncertain MIMO nonlinear systems with unknown dead-zones and a triangular control structure is proposed in this pa-per.The design is based on the principle o...A design scheme of adaptive fuzzy controller for a class of uncertain MIMO nonlinear systems with unknown dead-zones and a triangular control structure is proposed in this pa-per.The design is based on the principle of sliding mode control and the property of Nussbaum function.The approach does not require a priori knowledge of the signs of the control gains and the upper bounds and lower bounds of dead-zone parameters to be known a priori.By introducing the integral-type Lyapunov function and adopting the adaptive compensation term of the upper bound of the optimal approximation error and the dead-zone disturbance,the closed-loop control system is proved to be semi-globally stable in the sense that all signals involved are bounded,with tracking errors converging to zero.展开更多
The problem of adaptive fuzzy control for a class of large-scale, time-delayed systems with unknown nonlinear dead-zone is discussed here. Based on the principle of variable structure control, a design scheme of adapt...The problem of adaptive fuzzy control for a class of large-scale, time-delayed systems with unknown nonlinear dead-zone is discussed here. Based on the principle of variable structure control, a design scheme of adaptive, decentralized, variable structure control is proposed. The approach removes the conditions that the dead-zone slopes and boundaries are equal and symmetric, respectively. In addition, it does not require that the assumptions that all parameters of the nonlinear dead-zone model and the lumped uncertainty are known constants. The adaptive compensation terms of the approximation errors axe adopted to minimize the influence of modeling errors and parameter estimation errors. By theoretical analysis, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach.展开更多
The identification of nonlinear systems with multiple sampled rates is a difficult task.The motivation of our paper is to study the parameter estimation problem of Hammerstein systems with dead-zone characteristics by...The identification of nonlinear systems with multiple sampled rates is a difficult task.The motivation of our paper is to study the parameter estimation problem of Hammerstein systems with dead-zone characteristics by using the dual-rate sampled data.Firstly,the auxiliary model identification principle is used to estimate the unmeasurable variables,and the recursive estimation algorithm is proposed to identify the parameters of the static nonlinear model with the dead-zone function and the parameters of the dynamic linear system model.Then,the convergence of the proposed identification algorithm is analyzed by using the martingale convergence theorem.It is proved theoretically that the estimated parameters can converge to the real values under the condition of continuous excitation.Finally,the validity of the proposed algorithm is proved by the identification of the dual-rate sampled nonlinear systems.展开更多
Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncerta...Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach.展开更多
Most of the existing non-line-of-sight(NLOS)localization methods depend on the layout information of the scene which is difficult to be obtained in advance in the practical application scenarios.To solve the problem,a...Most of the existing non-line-of-sight(NLOS)localization methods depend on the layout information of the scene which is difficult to be obtained in advance in the practical application scenarios.To solve the problem,an NLOS target localization method in unknown L-shaped corridor based ultra-wideband(UWB)multiple-input multiple-output(MIMO)radar is proposed in this paper.Firstly,the multipath propagation model of Lshaped corridor is established.Then,the localization process is analyzed by the propagation characteristics of diffraction and reflection.Specifically,two different back-projection imaging processes are performed on the radar echo,and the positions of focus regions in the two images are extracted to generate candidate targets.Furthermore,the distances of propagation paths corresponding to each candidate target are calculated,and then the similarity between each candidate target and the target is evaluated by employing two matching factors.The locations of the targets and the width of the corridor are determined based on the matching rules.Finally,two experiments are carried out to demonstrate that the method can effectively obtain the target positions and unknown scene information even when partial paths are lost.展开更多
A unknown input observer (UIO) design for a class of linear time-delay systems when the observer error can't completely decouple from unknown input is dealt with. A sufficient condition to its existence is presente...A unknown input observer (UIO) design for a class of linear time-delay systems when the observer error can't completely decouple from unknown input is dealt with. A sufficient condition to its existence is presented based on Lyapunov stability method. Design problem of the proposed observer is formulated in term of linear matrix inequalities. Two design problems of the observer with internal delay and without internal delay are formulated. Based on H∞ control theory in time-delay systems, the proposed observer is designed in term of linear matrix inequalities (LMI). A design algorithm is proposed. The effective of the proposed approach is illustrated by a numerical example.展开更多
Most existing studies about passive radar systems are based on the already known illuminator of opportunity(IO)states.However,in practice,the receiver generally has little knowledge about the IO states.Little research...Most existing studies about passive radar systems are based on the already known illuminator of opportunity(IO)states.However,in practice,the receiver generally has little knowledge about the IO states.Little research has studied this problem.This paper analyzes the observability and estimability for passive radar systems with unknown IO states under three typical scenarios.Besides,the directions of high and low estimability with respect to various states are given.Moreover,two types of observations are taken into account.The effects of different observations on both observability and estimability are well analyzed.For the observability test,linear and nonlinear methods are considered,which proves that both tests are applicable to the system.Numerical simulations confirm the correctness of the theoretical analysis.展开更多
A novel LS-SVM control method is proposed for general unknown nonlinear systems. A linear kernel LS-SVM model is firstly developed for input/output(I/O) approximation. The LS-SVM control law is then derived directly f...A novel LS-SVM control method is proposed for general unknown nonlinear systems. A linear kernel LS-SVM model is firstly developed for input/output(I/O) approximation. The LS-SVM control law is then derived directly from this developed model without any approximation and assumption. It further proves that the control error is fully equal to the LS-SVM modeling error. This means that a desirable control performance can be achieved because the LS-SVM has been proven to have an outstanding modeling ability in the previous studies. Case studies finally demonstrate the effectiveness of the proposed LS-SVM control approach.展开更多
随着各种新型雷达的出现或战时预留模式的采用,真实的战场电磁环境将越加复杂,大概率会出现种类未知且参数突变的雷达调制信号,对现有的调制方式识别算法带来严峻挑战。对此,分析雷达调制方式“未知”对识别结果的影响机理,将开集差分...随着各种新型雷达的出现或战时预留模式的采用,真实的战场电磁环境将越加复杂,大概率会出现种类未知且参数突变的雷达调制信号,对现有的调制方式识别算法带来严峻挑战。对此,分析雷达调制方式“未知”对识别结果的影响机理,将开集差分分布对齐(distribution alignment with open set difference,DAOD)算法引入雷达调制方式识别领域,设计具体应用的技术方案,并针对DAOD算法所需参数依靠先验知识或者试探选取问题,利用蜣螂优化(dung beetle optimizer,DBO)算法进行参数优化。仿真结果表明:在单个雷达调制方式未知情形下,精确度Accuracy和F-measure分值的平均值分别可达91.34%和95.11%;在多个雷达调制方式未知情形下,Accuracy和F-measure的平均值分别可达91.37%、93.69%;与DAOD算法相比,上述结果分别提升了3.77%、1.83%、21.17%和12.06%。因此,DBO-DAOD算法可有效提升未知雷达调制方式的识别率。展开更多
基金Supported by National Natural Science Foundation of P.R.China(60074013),the Foundation of the Education Bureau of JiangsuProvince(KK0310067&05KJB520152),and the Foundation of Infor-mation Science Subject Group of Yangzhou University(ISG 030606).
文摘A design scheme of adaptive fuzzy controller for a class of uncertain MIMO nonlinear systems with unknown dead-zones and a triangular control structure is proposed in this pa-per.The design is based on the principle of sliding mode control and the property of Nussbaum function.The approach does not require a priori knowledge of the signs of the control gains and the upper bounds and lower bounds of dead-zone parameters to be known a priori.By introducing the integral-type Lyapunov function and adopting the adaptive compensation term of the upper bound of the optimal approximation error and the dead-zone disturbance,the closed-loop control system is proved to be semi-globally stable in the sense that all signals involved are bounded,with tracking errors converging to zero.
基金This project was supported by the National Natural Science Foundation of China (60074013)the Foundation of New Era Talent Engineering of Yangzhou University.
文摘The problem of adaptive fuzzy control for a class of large-scale, time-delayed systems with unknown nonlinear dead-zone is discussed here. Based on the principle of variable structure control, a design scheme of adaptive, decentralized, variable structure control is proposed. The approach removes the conditions that the dead-zone slopes and boundaries are equal and symmetric, respectively. In addition, it does not require that the assumptions that all parameters of the nonlinear dead-zone model and the lumped uncertainty are known constants. The adaptive compensation terms of the approximation errors axe adopted to minimize the influence of modeling errors and parameter estimation errors. By theoretical analysis, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach.
基金supported by the National Natural Science Foundation of China(61863034)
文摘The identification of nonlinear systems with multiple sampled rates is a difficult task.The motivation of our paper is to study the parameter estimation problem of Hammerstein systems with dead-zone characteristics by using the dual-rate sampled data.Firstly,the auxiliary model identification principle is used to estimate the unmeasurable variables,and the recursive estimation algorithm is proposed to identify the parameters of the static nonlinear model with the dead-zone function and the parameters of the dynamic linear system model.Then,the convergence of the proposed identification algorithm is analyzed by using the martingale convergence theorem.It is proved theoretically that the estimated parameters can converge to the real values under the condition of continuous excitation.Finally,the validity of the proposed algorithm is proved by the identification of the dual-rate sampled nonlinear systems.
基金National Natural Science Foundation of China(62373102)Jiangsu Natural Science Foundation(BK20221455)Anhui Provincial Key Research and Development Project(2022i01020013)。
文摘Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach.
基金supported by National Natural Science Foundation of China(U20B2070,62001091)Sichuan Science and Technology Program(2022YFS0531).
文摘Most of the existing non-line-of-sight(NLOS)localization methods depend on the layout information of the scene which is difficult to be obtained in advance in the practical application scenarios.To solve the problem,an NLOS target localization method in unknown L-shaped corridor based ultra-wideband(UWB)multiple-input multiple-output(MIMO)radar is proposed in this paper.Firstly,the multipath propagation model of Lshaped corridor is established.Then,the localization process is analyzed by the propagation characteristics of diffraction and reflection.Specifically,two different back-projection imaging processes are performed on the radar echo,and the positions of focus regions in the two images are extracted to generate candidate targets.Furthermore,the distances of propagation paths corresponding to each candidate target are calculated,and then the similarity between each candidate target and the target is evaluated by employing two matching factors.The locations of the targets and the width of the corridor are determined based on the matching rules.Finally,two experiments are carried out to demonstrate that the method can effectively obtain the target positions and unknown scene information even when partial paths are lost.
基金This project was supported by the National Natural Science Foundation of China(60374024)
文摘A unknown input observer (UIO) design for a class of linear time-delay systems when the observer error can't completely decouple from unknown input is dealt with. A sufficient condition to its existence is presented based on Lyapunov stability method. Design problem of the proposed observer is formulated in term of linear matrix inequalities. Two design problems of the observer with internal delay and without internal delay are formulated. Based on H∞ control theory in time-delay systems, the proposed observer is designed in term of linear matrix inequalities (LMI). A design algorithm is proposed. The effective of the proposed approach is illustrated by a numerical example.
基金This work was supported by the National Natural Science Foundation of China(61803379)the China Postdoctoral Science Foundation(2017M613370,2018T111129).
文摘Most existing studies about passive radar systems are based on the already known illuminator of opportunity(IO)states.However,in practice,the receiver generally has little knowledge about the IO states.Little research has studied this problem.This paper analyzes the observability and estimability for passive radar systems with unknown IO states under three typical scenarios.Besides,the directions of high and low estimability with respect to various states are given.Moreover,two types of observations are taken into account.The effects of different observations on both observability and estimability are well analyzed.For the observability test,linear and nonlinear methods are considered,which proves that both tests are applicable to the system.Numerical simulations confirm the correctness of the theoretical analysis.
基金Project(51205420)supported by the National Natural Science Foundation of ChinaProject(NCET-13-0593)supported by the Program for New Century Excellent Talents in University,ChinaProject(14C0208)supported by the Research Foundation of Education Bureau of Hunan Province,China
文摘A novel LS-SVM control method is proposed for general unknown nonlinear systems. A linear kernel LS-SVM model is firstly developed for input/output(I/O) approximation. The LS-SVM control law is then derived directly from this developed model without any approximation and assumption. It further proves that the control error is fully equal to the LS-SVM modeling error. This means that a desirable control performance can be achieved because the LS-SVM has been proven to have an outstanding modeling ability in the previous studies. Case studies finally demonstrate the effectiveness of the proposed LS-SVM control approach.
基金Supported by National Natural Science Foundation of China(60374002,60674036)the Science and Technical Development Plan of Shandong Province (2004GG4204014)the Program for New Century Excellent Talents in University of China
文摘随着各种新型雷达的出现或战时预留模式的采用,真实的战场电磁环境将越加复杂,大概率会出现种类未知且参数突变的雷达调制信号,对现有的调制方式识别算法带来严峻挑战。对此,分析雷达调制方式“未知”对识别结果的影响机理,将开集差分分布对齐(distribution alignment with open set difference,DAOD)算法引入雷达调制方式识别领域,设计具体应用的技术方案,并针对DAOD算法所需参数依靠先验知识或者试探选取问题,利用蜣螂优化(dung beetle optimizer,DBO)算法进行参数优化。仿真结果表明:在单个雷达调制方式未知情形下,精确度Accuracy和F-measure分值的平均值分别可达91.34%和95.11%;在多个雷达调制方式未知情形下,Accuracy和F-measure的平均值分别可达91.37%、93.69%;与DAOD算法相比,上述结果分别提升了3.77%、1.83%、21.17%和12.06%。因此,DBO-DAOD算法可有效提升未知雷达调制方式的识别率。