期刊文献+
共找到296篇文章
< 1 2 15 >
每页显示 20 50 100
Multi-factor high-order intuitionistic fuzzy timeseries forecasting model 被引量:1
1
作者 Ya'nan Wang Yingjie Lei +1 位作者 Yang Lei Xiaoshi Fan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第5期1054-1062,共9页
Fuzzy sets theory cannot describe the neutrality degreeof data, which has largely limited the objectivity of fuzzy time seriesin uncertain data forecasting. With this regard, a multi-factor highorderintuitionistic fuz... Fuzzy sets theory cannot describe the neutrality degreeof data, which has largely limited the objectivity of fuzzy time seriesin uncertain data forecasting. With this regard, a multi-factor highorderintuitionistic fuzzy time series forecasting model is built. Inthe new model, a fuzzy clustering algorithm is used to get unequalintervals, and a more objective technique for ascertaining membershipand non-membership functions of the intuitionistic fuzzy setis proposed. On these bases, forecast rules based on multidimensionalintuitionistic fuzzy modus ponens inference are established.Finally, contrast experiments on the daily mean temperature ofBeijing are carried out, which show that the novel model has aclear advantage of improving the forecast accuracy. 展开更多
关键词 multi-factor high-order intuitionistic fuzzy time series forecasting model intuitionistic fuzzy inference.
在线阅读 下载PDF
基于时间序列大模型TimeGPT光伏功率预测方法研究
2
作者 史文瑜 张珍翼 杨德昌 《电力科学与技术学报》 北大核心 2025年第4期150-160,共11页
目前,各种统计和机器模型已经广泛的应用到光伏功率预测中,但在光伏历史数据稀缺的情况下,这些方法普遍存在预测准确性较低的情况。为此,将时间序列大模型(time generative pre-trained transformer,TimeGPT)引入到光伏功率短期预测中... 目前,各种统计和机器模型已经广泛的应用到光伏功率预测中,但在光伏历史数据稀缺的情况下,这些方法普遍存在预测准确性较低的情况。为此,将时间序列大模型(time generative pre-trained transformer,TimeGPT)引入到光伏功率短期预测中。先基于1000亿数据点的大规模和多样化的时间序列数据集(如金融、交通、银行、网络流量、天气、能源、医疗等)构建时间序列大模型;再利用少量光伏功率历史数据对TimeGPT进行微调,以适应与光伏发电功率预测相关的数据分布和特征;然后,在具有用户隐私的光伏数据集中进行仿真,并与现有统计和机器模型进行对比。以案例1为例,当预测步长为1 h时,TimeGPT的平均绝对误差(mean absolute error,MAE)较对比模型的均有所降低;最后,总结了TimeGPT应用条件和改进方向。该文可为TimeGPT在新型电力系统中的应用提供借鉴。 展开更多
关键词 机器学习 光伏功率预测 时间序列大模型 新型电力系统
在线阅读 下载PDF
A Novel Hybrid FA-Based LSSVR Learning Paradigm for Hydropower Consumption Forecasting 被引量:4
3
作者 TANG Ling WANG Zishu +2 位作者 LI Xinxie YU Lean ZHANG Guoxing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第5期1080-1101,共22页
Due to the nonlinearity and nonstationary of hydropower market data, a novel hybrid learning paradigm is proposed to predict hydropower consumption, by incorporating firefly algorithm (FA) into least square support ... Due to the nonlinearity and nonstationary of hydropower market data, a novel hybrid learning paradigm is proposed to predict hydropower consumption, by incorporating firefly algorithm (FA) into least square support vector regression (LSSVR), i.e., FA-based LSSVR model. In the novel model, the powerful and effective artificial intelligence (AI) technique, i.e., LSSVR, is employed to forecast hydropower consumption. Furthermore, a promising AI optimization tool, i.e., FA, is espe- cially introduced to address the crucial but difficult task of parameters determination in LSSVR (e.g., hyper and kernel function parameters). With the Chinese hydropower consumption as sample data, the empirical study has statistically confirmed the superiority of the novel FA-based LSSVR model to other benchmark models (including existing popular traditional econometric models, AI models and similar hybrid LSSVRs with other popular parameter searching tools)~ in terms of level and direc- tional accuracy. The empirical results also imply that the hybrid FA-based LSSVR learning paradigm with powerful forecasting tool and parameters optimization method can be employed as an effective forecasting tool for not only hydropower consumption but also other complex data. 展开更多
关键词 Artificial intelligence firefly algorithm hybrid model hydropower consumption leastsquares support vector regression time series forecasting.
在线阅读 下载PDF
Crop Yield Forecasted Model Based on Time Series Techniques
4
作者 Li Hong-ying Hou Yan-lin +1 位作者 Zhou Yong-juan Zhao Hui-ming 《Journal of Northeast Agricultural University(English Edition)》 CAS 2012年第1期73-77,共5页
Traditional studies on potential yield mainly referred to attainable yield: the maximum yield which could be reached by a crop in a given environment. The new concept of crop yield under average climate conditions wa... Traditional studies on potential yield mainly referred to attainable yield: the maximum yield which could be reached by a crop in a given environment. The new concept of crop yield under average climate conditions was defined in this paper, which was affected by advancement of science and technology. Based on the new concept of crop yield, the time series techniques relying on past yield data was employed to set up a forecasting model. The model was tested by using average grain yields of Liaoning Province in China from 1949 to 2005. The testing combined dynamic n-choosing and micro tendency rectification, and an average forecasting error was 1.24%. In the trend line of yield change, and then a yield turning point might occur, in which case the inflexion model was used to solve the problem of yield turn point. 展开更多
关键词 potential yield forecasting model time series technique yield turning point yield channel
在线阅读 下载PDF
A Dynamic Forecasting System with Applications in Production Logistics
5
作者 CHEUNG Chi-fai LEE Wing-bun LO Victor 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期133-134,共2页
Production logistics involve the co-ordination of ac tivities such as production and materials control (PMC), inventory management, p roduct life cycle management, etc. Those activities demand for an accurate forec as... Production logistics involve the co-ordination of ac tivities such as production and materials control (PMC), inventory management, p roduct life cycle management, etc. Those activities demand for an accurate forec asting model. However, the conventional methods of making sell and buy decision based on human forecast or conventional moving average and exponential smoothing methods is no longer be sufficient to meet the future need. Furthermore, the un derlying statistics of the market information change from time to time due to a number of reasons such as change of global economic environment, government poli cies and business risks. This demands for highly adaptive forecasting model which is robust enough to response and adapt well to the fast changes in the dat a characteristics, in other words, the trajectory of the "dynamic characteristic s" of the data. In this paper, an adaptive time-series modelling method was proposed for short -term dynamic forecasting. The method employs an autoregressive (AR) time-seri es model to carry out the forecasting process. A modified least mean square (MLM S) adaptive filter algorithm was established for adjusting the AR model coeffici ents so as to minimise the sum of squared of forecasting errors. A prototype dyn amic forecasting system was built based on the adaptive time-series modelling m ethod. Basically, the dynamic forecasting system can be divided into two phases, i.e. the Learning Phase and the Application Phase. The learning procedures star t with the determination of upper limit of the adaptation gain based on the conv ergence in the mean square criterion. Hence, the optimum ELMS filter parameters are determined using an iteration algorithm which changes each filter parameter i.e. the order, the adaptation gain andthe values initial coefficient vector on e by one inside a predetermined iteration range. The set of parameters which giv es the minimum value for sum of squared errors within the iteration range is sel ected as the optimum set of filter parameters. In the Application Phase, the sys tem is operated under a real-time environment. The sampled data is processed by the optimised ELMS filter and the forecasted data are calculated based on the a daptive time-series model. The error of forecasting is continuously monitored w ithin the predefined tolerance. When the system detects excessive forecasting er ror, a feedback alarm signal was issued for system re-calibration. Experimental results indicated that the convergence rate and sum of squared erro rs during initial adaptation could be significantly improved using the MLMS algorithm. The performance of the system was verified through a series of experi ments conducted on the forecast of materials demand and costing in productio n logistics. Satisfactory results were achieved with the forecast errors confini ng within in most instances. Further applications of the system can be found i n sales demand forecast, inventory management as well as collaborative planning, forecast and replenishment (CPFR) in logistics engineering. 展开更多
关键词 adaptive time-series model dynamic forecasting production logistics modified least mean square algorithm
在线阅读 下载PDF
基于双模型并联的复杂时序预测方法
6
作者 郑洪英 夏林中 刘星 《深圳大学学报(理工版)》 北大核心 2025年第3期334-341,共8页
传统时序预测模型通常仅关注捕捉复杂时序中的趋势和模式,而忽略了变量间的相互作用,限制了该模型在复杂时序预测中应用.提出一种Dualformer双模型并联方案,该模型并联iTransformer(inverted transformer)和PatchTST(patch time series ... 传统时序预测模型通常仅关注捕捉复杂时序中的趋势和模式,而忽略了变量间的相互作用,限制了该模型在复杂时序预测中应用.提出一种Dualformer双模型并联方案,该模型并联iTransformer(inverted transformer)和PatchTST(patch time series transformer),通过激活函数替代前馈神经网络,并通过多层感知机计算输出结果.Dualformer利用注意力机制同时捕捉复杂时序中的时间维度和变量维度信息,关注时间趋势与多变量交互.实验结果显示,Dualformer在复杂时序预测效果上显著优于对比模型iTransformer、PatchTST和DLinear(decomposition linear),在实际应用中可显著提高复杂时序预测的准确度,具有广泛应用前景. 展开更多
关键词 人工智能 深度学习 复杂时序预测 注意力机制 多层感知机 Dualformer模型
在线阅读 下载PDF
考虑时序特征缺失值动态插补的超短期风电功率预测
7
作者 李丹 唐建 +2 位作者 缪书唯 黄烽云 罗娇娇 《中国电机工程学报》 北大核心 2025年第17期6790-6803,I0015,共15页
风电功率预测使用的数据集可能存在不同程度的数据缺失现象,由于缺失值处理往往独立于预测模型训练之外,无法充分利用真实数据的时序相关特点提高预测效果,对此提出考虑时序特征缺失值动态插补的超短期风电功率预测方法。针对时序数据... 风电功率预测使用的数据集可能存在不同程度的数据缺失现象,由于缺失值处理往往独立于预测模型训练之外,无法充分利用真实数据的时序相关特点提高预测效果,对此提出考虑时序特征缺失值动态插补的超短期风电功率预测方法。针对时序数据存在缺失值的问题,设计嵌入时滞衰减插补策略的门控循环单元动态捕捉输入特征时间序列中缺失值前后观测值间的不规则时滞关系,并通过带掩码的自相关分析,确定输入特征的最佳时窗长度和时滞衰减率函数的初始参数;基于门控循环单元提取的时序信息,进一步构建序列到序列的预测结构,协调历史和预测时刻输入特征维度不一致的问题,输出未来15 min~4 h的风电功率预测序列。实验结果表明,所提方法在风电数据含缺失值的情景下,与传统的缺失值处理和预测方法相比,具有更高的预测精度和更稳定的预测性能。 展开更多
关键词 超短期风电功率预测 时序特征缺失值 自相关分析 时滞衰减率函数 序列到序列模型
在线阅读 下载PDF
基于KAN-N-Beats的可解释性滑坡位移预测
8
作者 刘慧婷 谢凯 +2 位作者 田宏岭 贺建飚 张伟 《人民长江》 北大核心 2025年第8期133-138,共6页
针对现有滑坡位移预测模型预测精度不高、泛化性差、模型复杂度高以及传统深度学习算法可解释性差的问题,提出了一种基于KAN-N-Beats的滑坡位移预测模型。使用KAN代替N-Beats中的全连接层,利用KAN采用自适应学习机制的特点,提高了预测... 针对现有滑坡位移预测模型预测精度不高、泛化性差、模型复杂度高以及传统深度学习算法可解释性差的问题,提出了一种基于KAN-N-Beats的滑坡位移预测模型。使用KAN代替N-Beats中的全连接层,利用KAN采用自适应学习机制的特点,提高了预测精度以及泛化性能;同时KAN通过稀疏性、可视化、剪枝、符号化及仿射拟合等多种手段,提高了模型的可解释性。N-Beats则将预测任务分解为趋势和季节性成分,便于理解不同时间序列特征的提取,使得KAN-N-Beats模型预测结果具有更高的可解释性;利用N-Beats模型内部可分解的能力将滑坡位移分解后预测,不需要大量特征工程,减少了KAN-N-Beats模型复杂度,提高了预测效率。使用国家冰川冻土沙漠科学数据中心的三峡库区白水河滑坡和八字门滑坡的数据作为研究数据集,该方法在白水河滑坡ZG118监测点的预测结果与真实位移高度重合,R^(2)和RMSE分别为0.9887和5.0313 mm。在白水河滑坡ZG118以及八字门滑坡ZG110、ZG111监测点的泛化性测试表明,该算法优于其他对比模型,可提高滑坡预测精度,且具有可解释性。研究成果可为提升滑坡位移预测效率提供参考。 展开更多
关键词 滑坡位移预测 可解释性 KAN-N-Beats模型 时序预测 深度学习 白水河滑坡 八字门滑坡
在线阅读 下载PDF
决策智能中的时间序列预测大模型
9
作者 邵泽志 余澄庆 +2 位作者 李雨杰 王飞 徐勇军 《指挥与控制学报》 北大核心 2025年第2期146-157,共12页
不同场景下时序数据的异质性极大地影响了智能决策中时序预测算法的泛化性和有效性,对其应用构成了重要阻碍。时序预测大模型是解决这一挑战的重要技术。综合了时序预测领域的最新研究动态,从模态视角自上而下地探讨了时序预测大模型的... 不同场景下时序数据的异质性极大地影响了智能决策中时序预测算法的泛化性和有效性,对其应用构成了重要阻碍。时序预测大模型是解决这一挑战的重要技术。综合了时序预测领域的最新研究动态,从模态视角自上而下地探讨了时序预测大模型的4种实现思路:基于提示的方法、基于微调的方法、基于对齐的方法以及时序预测基础模型。梳理了时序预测大模型构建过程中的核心要素和可用技术。探讨了未来的重要挑战和研究方向。 展开更多
关键词 时间序列 大语言模型 基础模型 预测
在线阅读 下载PDF
使用通道融合和序列平稳化策略的长期时间序列预测方法
10
作者 赵龙港 车超 赵天明 《小型微型计算机系统》 北大核心 2025年第5期1120-1126,共7页
长期时间序列预测在现实场景中扮演重要角色.先前的研究表明,基于Transformers的模型采用的逐点自注意力会增加计算复杂度,而基于线性结构和通道独立的模型可以获得更高的效率和准确性.然而,长期时间模式在不同通道之间也存在难以抽取... 长期时间序列预测在现实场景中扮演重要角色.先前的研究表明,基于Transformers的模型采用的逐点自注意力会增加计算复杂度,而基于线性结构和通道独立的模型可以获得更高的效率和准确性.然而,长期时间模式在不同通道之间也存在难以抽取的依赖关系.为了解决计算复杂度高和复杂时间模式难以捕捉的问题,该文提出了通道融合和序列平稳化模型,模型结合了通道独立与通道依赖的训练策略,基于线性结构发掘序列单个通道的相关性,并使用由傅里叶运算启发的卷积结构来自适应地融合不同的通道.同时,通过堆叠序列通道融合-分解模块,进一步提高模型的预测性能.此外,该文在子序列级别引入了平稳化与反平稳化模块,从而提高了模型的泛化能力.在长期预测方面,所提模型在3个通用时序数据集上的准确度超越了其他基准模型. 展开更多
关键词 时间序列预测 线性模型 周期分解 通道融合卷积 平稳化
在线阅读 下载PDF
基于LSTM算法的汽车前照灯控制策略研究
11
作者 张贤祯 周强 +1 位作者 张永炬 李强 《机械设计与制造》 北大核心 2025年第7期106-109,116,共5页
针对常见的固定式汽车前照灯照射角不能在车辆转弯时随动,导致弯道内侧存在视野盲区的问题。文章对汽车转弯时前照灯水平转动控制策略进行研究,建立了具有轮胎侧偏特性的线性二自由度汽车模型。分别采用模糊控制算法在SIMULINK中进行仿... 针对常见的固定式汽车前照灯照射角不能在车辆转弯时随动,导致弯道内侧存在视野盲区的问题。文章对汽车转弯时前照灯水平转动控制策略进行研究,建立了具有轮胎侧偏特性的线性二自由度汽车模型。分别采用模糊控制算法在SIMULINK中进行仿真和LSTM算法结合前照灯的实际转角数据进行学习,预测出前照灯下一阶段的转角参数。两者的仿真结果进行比对分析表明:模糊控制和LSTM算法预测得到的前照灯转角数据与理论值的均方根差分别为1.83和1.57,LSTM算法能提高前照灯转角控制的精度。 展开更多
关键词 前照灯 时间序列预测 转角模型 控制系统
在线阅读 下载PDF
改进变分模态分解和LSSVM的用户电力负荷预测
12
作者 解世璇 刘立群 吴青峰 《现代电子技术》 北大核心 2025年第20期127-134,共8页
为提升电力系统短期负荷预测的准确率,保证日常电力系统的正常运行,提出一种基于WOA-VMD-SSA-LSSVM的短期电力负荷预测模型。首先,使用鲸鱼优化算法(WOA)对变分模态分解(VMD)的核心参数(k值和惩罚系数α)进行自动寻优,得到最佳效果的分... 为提升电力系统短期负荷预测的准确率,保证日常电力系统的正常运行,提出一种基于WOA-VMD-SSA-LSSVM的短期电力负荷预测模型。首先,使用鲸鱼优化算法(WOA)对变分模态分解(VMD)的核心参数(k值和惩罚系数α)进行自动寻优,得到最佳效果的分解子序列,减少不同趋势信息对预测精度的影响,并利用优化后的VMD对数据进行分解;然后,使用麻雀搜索算法(SSA)改进最小二乘支持向量机(LSSVM)的模型学习参数,对惩罚系数和核函数进行参数寻优,避免了单一预测变量精度不高的问题,进而建立预测模型,获得更为精确的预测结果;最后,将分解后的各组数据分别输入模型中,并将每个子序列的预测结果相加得到最终预测结果。实验结果表明,与PSO、GWO和SABO算法的建模结果相比,所提模型具有更高的预测精度且耗时较短,在一定程度上可为负荷管理、电力优化调度提供科学决策依据。 展开更多
关键词 预测模型分析 鲸鱼优化算法 麻雀搜索算法 变分模态分解 最小二乘支持向量机 数据预处理 时间序列预测
在线阅读 下载PDF
片烟库存预测研究中组合时间序列模型的应用
13
作者 褚旭 胡宗玉 +3 位作者 许强 张金召 杜航 胡波 《天津农业科学》 2025年第7期41-47,55,共8页
为探讨组合时间序列模型在片烟库存预测中的应用效果,通过收集某卷烟工业企业往期片烟库存数据,建立月度片烟库存的单一和组合时间序列预测模型,并对比不同模型的预测效果。结果表明:片烟库存数据的月度和年度时序图均具有明显的时间周... 为探讨组合时间序列模型在片烟库存预测中的应用效果,通过收集某卷烟工业企业往期片烟库存数据,建立月度片烟库存的单一和组合时间序列预测模型,并对比不同模型的预测效果。结果表明:片烟库存数据的月度和年度时序图均具有明显的时间周期性;基于指数平滑法建立的预测模型无法准确判断真实值上升或下降的趋势,预测的RMSE、MAE和MAPE值分别为1.93、1.47、3.51%;基于自适应滤波法建立的预测模型随着数据样本的增加,预测精度有所下降,预测的RMSE、MAE和MAPE值分别为0.32、0.26、0.61%;指数平滑组合时间序列模型和自适应滤波组合时间序列模型预测的RMSE、MAE和MAPE值分别为0.91、0.69、1.75%和0.28、0.21、0.52%。综上,组合模型拟合效果更好,能够更好地反映片烟库存的真实水平,其中以自适应滤波组合模型的效果更佳。 展开更多
关键词 片烟 库存预测 时间序列 组合模型
在线阅读 下载PDF
面向直接后继关系交互演化的过程模型预测方法
14
作者 张润涛 方贤文 《计算机应用研究》 北大核心 2025年第11期3299-3306,共8页
预测性流程监控(predictive process monitoring,PPM)是流程挖掘中的关键任务,旨在基于当前事件日志预测未来流程行为。然而,现有的PPM方法大多集中在对单个流程实例的短期预测,例如下一个活动预测、剩余处理时间预测等,预测范围有限且... 预测性流程监控(predictive process monitoring,PPM)是流程挖掘中的关键任务,旨在基于当前事件日志预测未来流程行为。然而,现有的PPM方法大多集中在对单个流程实例的短期预测,例如下一个活动预测、剩余处理时间预测等,预测范围有限且缺乏对流程演变的全局视角,从而无法提供流程模型在较长时间范围内的演变趋势。因此,提出了一种基于时间序列分析的过程模型预测(PMF)方法,将原始事件日志转换为多维时间序列数据,系统性地捕捉流程中所有活动对(直接后继关系)在时间上的频率演变。在考虑直接后继关系之间的相互影响下,预测出未来直接跟随图,从而实现对整个过程模型的长时间范围预测。实验结果表明,该方法在多个真实流程日志上均优于传统时序分析方法,在预测准确性和稳定性方面表现突出,具备良好的应用前景。 展开更多
关键词 过程模型预测 直接后继关系 时间序列分析 流程演变 过程挖掘
在线阅读 下载PDF
基于多因素特征工程建模的电力负荷预测方法
15
作者 刘硕 丁宇昂 赵梓焱 《沈阳工业大学学报》 北大核心 2025年第3期309-316,共8页
【目的】准确的电力负荷预测是电力系统实现顺利运行和有效管理的关键,可使电力公司有效调度发电设备,从而提高电力系统的运行效率和经济效益。然而,电力负荷数据受多种外部因素影响,同时具有显著的时间依赖性,导致其难以精准预测。为此... 【目的】准确的电力负荷预测是电力系统实现顺利运行和有效管理的关键,可使电力公司有效调度发电设备,从而提高电力系统的运行效率和经济效益。然而,电力负荷数据受多种外部因素影响,同时具有显著的时间依赖性,导致其难以精准预测。为此,提出一种融合多因素建模与时间序列分析的电力负荷预测模型,通过兼顾多因素复杂影响分析与电力负荷时间依赖性特征,实现电力负荷的精准预测。【方法】为了突破多因素分析方法与时间序列预测建模方法各自的局限性,基于深度学习与多因素分析方法,提出了一种结合长短期记忆(long short-term memory,LSTM)网络与贝叶斯优化算法的改进电力负荷预测模型。首先,构建了一个全面的多因素特征池,包括电力负荷的历史时序特征和多种外部因素特征,以充分捕捉电力负荷数据与多种影响因素间的复杂关系。其次,采用LSTM网络作为核心模型,利用其独特的门控机制与记忆单元,捕捉电力负荷数据的时间依赖性和多因素之间的复杂关联。引入贝叶斯优化算法对LSTM模型的超参数进行调优,以高斯过程作为代理模型,充分利用先验信息,提升模型训练效率和预测性能。【结果】利用5个实际变压器数据集对模型进行了训练和测试,并通过多种评价指标验证了模型的有效性。基于多因素特征工程建模的电力负荷预测方法在5个不同变压器数据集上的预测性能均显著优于利用单一因素预测的模型,进一步突出了多因素特征池的有效性。LSTM模型的最大决定系数为0.9207,最小均方误差为0.042,最小平均绝对误差为0.024,表明其在复杂电力负荷预测任务中具有优越性能。【结论】融合多因素建模与时间序列分析的电力负荷预测模型充分考虑了外部因素的复杂性和电力负荷数据的时间依赖性特征,创新性地引入了一个全面的特征池参与LSTM模型的训练和测试。结合多因素特征池建模的LSTM网络具有较高的预测精度和鲁棒性,为电力负荷预测提供了新的技术思路,对智能电网的规划和调度具有重要的参考价值,并为进一步发展精准负荷预测技术奠定了基础。 展开更多
关键词 电力负荷预测 LSTM网络 贝叶斯优化 多因素分析 时间序列预测 特征工程 数据驱动建模 深度学习
在线阅读 下载PDF
Hybrid grey model to forecast monitoring series with seasonality 被引量:3
16
作者 王琪洁 廖新浩 +3 位作者 周永宏 邹峥嵘 朱建军 彭悦 《Journal of Central South University of Technology》 2005年第5期623-627,共5页
The grey forecasting model has been successfully applied to many fields. However, the precision of GM(1,1) model is not high. In order to remove the seasonal fluctuations in monitoring series before building GM(1,1) m... The grey forecasting model has been successfully applied to many fields. However, the precision of GM(1,1) model is not high. In order to remove the seasonal fluctuations in monitoring series before building GM(1,1) model, the forecasting series of GM(1,1) was built, and an inverse process was used to resume the seasonal fluctuations. Two deseasonalization methods were presented , i.e., seasonal index-based deseasonalization and standard normal distribution-based deseasonalization. They were combined with the GM(1,1) model to form hybrid grey models. A simple but practical method to further improve the forecasting results was also suggested. For comparison, a conventional periodic function model was investigated. The concept and algorithms were tested with four years monthly monitoring data. The results show that on the whole the seasonal index-GM(1,1) model outperform the conventional periodic function model and the conventional periodic function model outperform the SND-GM(1,1) model. The mean Absolute error and mean square error of seasonal index-GM(1,1) are 30.69% and 54.53% smaller than that of conventional periodic function model, respectively. The high accuracy, straightforward and easy implementation natures of the proposed hybrid seasonal index-grey model make it a powerful analysis technique for seasonal monitoring series. 展开更多
关键词 seasonal index GM(1 1) grey forecasting model time series
在线阅读 下载PDF
基于多变量样本卷积交互网络的电力系统频率安全性评估 被引量:1
17
作者 刘杰 石访 +2 位作者 宋雪萌 田硕硕 聂礼强 《电力系统自动化》 EI CSCD 北大核心 2024年第22期160-170,共11页
现有电力系统暂态频率智能评估方法未充分考虑输入数据的时序特征。因此,文中提出一种基于暂态频率响应曲线智能预测的电力系统频率安全性评估方法。设计了一种多变量样本卷积交互网络,可充分挖掘电力系统量测数据的时序特征,从而提高... 现有电力系统暂态频率智能评估方法未充分考虑输入数据的时序特征。因此,文中提出一种基于暂态频率响应曲线智能预测的电力系统频率安全性评估方法。设计了一种多变量样本卷积交互网络,可充分挖掘电力系统量测数据的时序特征,从而提高电力系统暂态频率响应曲线的预测精度;基于所预测的频率响应曲线计算最大频率偏差、最大频率偏差发生时间和准稳态频率等关键指标,并综合评估系统的频率安全性。在频率稳定标准算例上进行仿真测试,结果表明,所提方法与深度学习等经典方法相比,频率响应曲线预测和系统频率安全性评估精度均得到有效提升。 展开更多
关键词 频率安全 深度学习 安全性评估 时序预测模型 卷积交互网络 暂态频率响应
在线阅读 下载PDF
考虑时序特征的深圳港集装箱吞吐量组合方法预测 被引量:2
18
作者 贾红雨 李昊林 +2 位作者 杨浩浩 李一 蔡思源 《科学技术与工程》 北大核心 2024年第27期11861-11868,共8页
集装箱吞吐量预测对港口企业运营及决策具有重要的作用。传统集装箱吞吐量预测方法存在预测精度不高的缺点。为解决这一问题,提出了一种考虑季节性和不确定性的SARIMA-XGBoost组合预测方法。针对集装箱吞吐量的季节性特征,选取季节性自... 集装箱吞吐量预测对港口企业运营及决策具有重要的作用。传统集装箱吞吐量预测方法存在预测精度不高的缺点。为解决这一问题,提出了一种考虑季节性和不确定性的SARIMA-XGBoost组合预测方法。针对集装箱吞吐量的季节性特征,选取季节性自回归移动平均模型(seasonal autoregressive integrated moving average model,SARIMA)捕捉周期性特征和线性特征;针对集装箱吞吐量中的不确定性因素,选取极致梯度提升树算法(extreme gradient boosting,XGBoost)自适应学习时间序列数据中的复杂模式和非线性特征。通过选取优化指标并计算分配权重的方式实现了预测模型中线性和非线性特征的有效融合,从而提升预测精度。通过对深圳港2013—2022年集装箱吞吐量月度数据进行实证研究和对比分析,结果表明SARIMA-XGBoost组合方法预测精度最高、稳定性好,验证了该组合方法在集装箱吞吐量预测中的有效性。 展开更多
关键词 集装箱吞吐量 组合预测 时序特征 SARIMA模型 XGBoost算法
在线阅读 下载PDF
配电网负荷预测中信号分解和预测模型组合的双层优化策略 被引量:1
19
作者 张扬 《智慧电力》 北大核心 2024年第9期104-111,共8页
负荷时间序列的波动性和非线性特征的加剧对负荷预测方法提出了更高的要求,而常规组合预测方法针对海量负荷数据存在应用局限性问题。为此,提出了配电网负荷预测中时序分解方法和预测模型组合的双层优化策略。首先针对某一负荷预测数据... 负荷时间序列的波动性和非线性特征的加剧对负荷预测方法提出了更高的要求,而常规组合预测方法针对海量负荷数据存在应用局限性问题。为此,提出了配电网负荷预测中时序分解方法和预测模型组合的双层优化策略。首先针对某一负荷预测数据,在时序信号分解层配置权重,以负荷均方根误差最小寻优各分解方法的权重系数,进而获得各时序信号分解方法的最优组合;在此基础上,在预测模型层进行组合方案寻优,通过配置权重系数以获得各预测模型的最优组合,进一步提升负荷预测的精度。仿真结果表明,所提策略可根据预测对象的特征优化组合各信号分解方法和预测模型,降低了配电网负荷序列的非平稳性对预测精度的影响。 展开更多
关键词 配电网 预测模型 时序信号分解 双层优化 组合预测
在线阅读 下载PDF
基于多尺度分段的长时间序列预测方法 被引量:3
20
作者 何胜林 龙琛 +6 位作者 郑静 王爽 文振焜 吴惠思 倪东 何小荣 吴雪清 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2024年第2期232-240,共9页
针对目前长时间序列预测(long sequence time-series forecasting,LSTF)存在历史数据量大、计算复杂度高、预测精度要求高等问题,提出一种基于多尺度分段的Transformer模型.该模型基于Transformer架构进行改进和优化,使用多尺度分段将... 针对目前长时间序列预测(long sequence time-series forecasting,LSTF)存在历史数据量大、计算复杂度高、预测精度要求高等问题,提出一种基于多尺度分段的Transformer模型.该模型基于Transformer架构进行改进和优化,使用多尺度分段将时间序列切片成多个时间段进行训练和预测,降低了长时间序列的复杂性,并实现了更高精度的预测.在电力变压器油温(electricity transformer temperature,ETT)数据集、用电负荷(electricity consumption load,ECL)数据集和天气(Weather)数据集中,分别采用传统Transfomer、Informer、门控循环单元(gated recurrent unit,GRU)、时序卷积网络(temporal convolutional network,TCN)和长短期记忆(long short-term memory,LSTM)5种基准模型与本研究提出的多尺度分段的Transformer模型,对长时间序列进行预测.结果表明,采用基于多尺度分段的Transformer模型在Weather数据集上对预测长度为192的时间序列预测的均方误差和平均绝对误差分别为0.367和0.407,均优于其他模型.基于多尺度分段的Transformer模型可以综合Transformer模型的优点,且计算速度更快,预测性能更高. 展开更多
关键词 计算机神经网络 时间序列预测 Transformer模型 多尺度分段 深度学习 电力预测
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部