An opportunistic maintenance model is presented for a continuously deteriorating series system with economical de-pendence. The system consists of two kinds of units, which are respectively subjected to the deteriorat...An opportunistic maintenance model is presented for a continuously deteriorating series system with economical de-pendence. The system consists of two kinds of units, which are respectively subjected to the deterioration failure described by Gamma process and the random failure described by Poisson process. A two-level opportunistic policy defined by three decision parameters is proposed to coordinate the different maintenance actions and minimize the long-run maintenance cost rate of the system. A computable expression of the average cost rate is established by using the renewal property of the stochastic process of the maintained system state. The optimal values of three deci- sion parameters are derived by an iteration approach based on the characteristic of Gamma process. The behavior of the proposed policy is illustrated through a numerical experiment. Comparative study with the widely used corrective maintenance policy demonstrates the advantage of the proposed opportunistic maintenance method in significantly reducing the maintenance cost. Simultane- ously, the applicable area of this opportunistic model is discussed by the sensitivity analysis of the set-up cost and random failure rate.展开更多
A unitized regenerative fuel cell(URFC)is a device that may function reversibly as either a fuel cell(FC)or water elec-trolysis(WE).An important component of this device is the Membrane electrode assembly(MEA).Therefo...A unitized regenerative fuel cell(URFC)is a device that may function reversibly as either a fuel cell(FC)or water elec-trolysis(WE).An important component of this device is the Membrane electrode assembly(MEA).Therefore,this study aimed to compare the performance outcomes of MEA using electrodes with single and three catalyst layers.This study measured Electrochemical Surface Area(ECSA),Electrochemical Impedance Spectroscopy(EIS),X-ray Diffraction analysis(XRD),and X-ray Fluorescence(XRF).Furthermore,the round-trip efficiency(RTE)of the MEA,as w ell as the performance in FC and WE mode,was measured.In comparison,The ECSA values of Pt-Ru/C and Pt/C with three catalyst layers were higher than the single catalyst layer.This result was supported by electrode characterization data for XRD and XRF.The respective electrical conductivity values of Pt-Ru/C and Pt/C with three catalyst layers are also higher than the single cata-lyst layer,and the performance of URFC using MEA with three catalyst layers has the highest value of RTE among the MEA performances of URFC,which is 100%at a current density of 4 mA·cm-2.展开更多
The unit cell configuration of lattice structures critically influences their load-bearing and energy absorption performance.In this study,three novel lattice structures were developed by modifying the conventional FB...The unit cell configuration of lattice structures critically influences their load-bearing and energy absorption performance.In this study,three novel lattice structures were developed by modifying the conventional FBCCZ unit cell through reversing,combining,and turning strategies.The designed lattices were fabricated via laser powder bed fusion(LPBF)using Ti-6Al-4V powder,and the mechanical properties,energy absorption capacity,and deformation behaviors were systematically investigated through quasi-static compression tests and finite element simulations.The results demonstrate that the three modified lattices exhibit superior performance over the conventional FBCCZ structure in terms of fracture strain,specific yield strength,specific ultimate strength,specific energy absorption,and energy absorption efficiency,thereby validating the efficacy of unit cell modifications in enhancing lattice performance.Notably,the CFBCCZ and TFBCCZ lattices significantly outperform both the FBCCZ and RFBCCZ lattice structures in load-bearing and energy absorption.While TFBCCZ shows marginally higher specific elastic modulus and energy absorption efficiency than CFBCCZ,the latter achieves superior energy absorption due to its highest ultimate strength and densification strain.Finite element simulations further reveal that the modified lattices,through optimized redistribution and adjustment of internal nodes and struts,effectively alleviate stress concentration during loading.This structural modification enhances the structural integrity and deformation stability under external loads,enabling a synergistic enhancement of load-bearing capacity and energy absorption performance.展开更多
Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties ...Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties in dealing with high dimensional time series target data, a threat assessment method based on self-attention mechanism and gated recurrent unit(SAGRU) is proposed. Firstly, a threat feature system including air combat situations and capability features is established. Moreover, a data augmentation process based on fractional Fourier transform(FRFT) is applied to extract more valuable information from time series situation features. Furthermore, aiming to capture key characteristics of battlefield evolution, a bidirectional GRU and SA mechanisms are designed for enhanced features.Subsequently, after the concatenation of the processed air combat situation and capability features, the target threat level will be predicted by fully connected neural layers and the softmax classifier. Finally, in order to validate this model, an air combat dataset generated by a combat simulation system is introduced for model training and testing. The comparison experiments show the proposed model has structural rationality and can perform threat assessment faster and more accurately than the other existing models based on deep learning.展开更多
远程终端单元(remote terminal unit, RTU)是当前电网中最主要的测量终端,但是其量测量没有统一时标,更新频率低,而且存在不确定性的传输时延。而同步相量测量单元(phasor measurement unit, PMU)具有高同步、高精度等特点,成为电力系...远程终端单元(remote terminal unit, RTU)是当前电网中最主要的测量终端,但是其量测量没有统一时标,更新频率低,而且存在不确定性的传输时延。而同步相量测量单元(phasor measurement unit, PMU)具有高同步、高精度等特点,成为电力系统中重要的数据采集装置。为协调利用这两种测量数据,首先归纳出RTU量测非同步的来源,分析了量测数据不同步对状态估计和潮流计算的影响,并给出了相关的验证结果。并提出基于能量交互算子的量测数据相关性分析方法。该方法应用同步数据间相关性最大的原理,利用PMU所产生的精确数据来同步RTU数据,为混合测量系统确定测量基准时刻。通过对IEEE39节点电网和广东83节点实际电网的仿真,结果表明该方法能有效校正量测数据非同步以及改善状态估计和潮流计算精度。展开更多
基金supported by the National Natural Science Foundation of China(6090400271201166)
文摘An opportunistic maintenance model is presented for a continuously deteriorating series system with economical de-pendence. The system consists of two kinds of units, which are respectively subjected to the deterioration failure described by Gamma process and the random failure described by Poisson process. A two-level opportunistic policy defined by three decision parameters is proposed to coordinate the different maintenance actions and minimize the long-run maintenance cost rate of the system. A computable expression of the average cost rate is established by using the renewal property of the stochastic process of the maintained system state. The optimal values of three deci- sion parameters are derived by an iteration approach based on the characteristic of Gamma process. The behavior of the proposed policy is illustrated through a numerical experiment. Comparative study with the widely used corrective maintenance policy demonstrates the advantage of the proposed opportunistic maintenance method in significantly reducing the maintenance cost. Simultane- ously, the applicable area of this opportunistic model is discussed by the sensitivity analysis of the set-up cost and random failure rate.
基金support from the Ministry of Higher Education Malaysia under grant HICOE-2023-005.
文摘A unitized regenerative fuel cell(URFC)is a device that may function reversibly as either a fuel cell(FC)or water elec-trolysis(WE).An important component of this device is the Membrane electrode assembly(MEA).Therefore,this study aimed to compare the performance outcomes of MEA using electrodes with single and three catalyst layers.This study measured Electrochemical Surface Area(ECSA),Electrochemical Impedance Spectroscopy(EIS),X-ray Diffraction analysis(XRD),and X-ray Fluorescence(XRF).Furthermore,the round-trip efficiency(RTE)of the MEA,as w ell as the performance in FC and WE mode,was measured.In comparison,The ECSA values of Pt-Ru/C and Pt/C with three catalyst layers were higher than the single catalyst layer.This result was supported by electrode characterization data for XRD and XRF.The respective electrical conductivity values of Pt-Ru/C and Pt/C with three catalyst layers are also higher than the single cata-lyst layer,and the performance of URFC using MEA with three catalyst layers has the highest value of RTE among the MEA performances of URFC,which is 100%at a current density of 4 mA·cm-2.
基金supported by National Key Lab of Aerospace Power System and Plasma Technology Foundation of China(Grant No.APSPT202301002)National Natural Science Foundation of China(Grant No.52001038)Natural Science Foundation of Chongqing,China(Grant Nos.cstc2019jcyj-msxm X0787 and cstc2021jcyj-msxm X0011)。
文摘The unit cell configuration of lattice structures critically influences their load-bearing and energy absorption performance.In this study,three novel lattice structures were developed by modifying the conventional FBCCZ unit cell through reversing,combining,and turning strategies.The designed lattices were fabricated via laser powder bed fusion(LPBF)using Ti-6Al-4V powder,and the mechanical properties,energy absorption capacity,and deformation behaviors were systematically investigated through quasi-static compression tests and finite element simulations.The results demonstrate that the three modified lattices exhibit superior performance over the conventional FBCCZ structure in terms of fracture strain,specific yield strength,specific ultimate strength,specific energy absorption,and energy absorption efficiency,thereby validating the efficacy of unit cell modifications in enhancing lattice performance.Notably,the CFBCCZ and TFBCCZ lattices significantly outperform both the FBCCZ and RFBCCZ lattice structures in load-bearing and energy absorption.While TFBCCZ shows marginally higher specific elastic modulus and energy absorption efficiency than CFBCCZ,the latter achieves superior energy absorption due to its highest ultimate strength and densification strain.Finite element simulations further reveal that the modified lattices,through optimized redistribution and adjustment of internal nodes and struts,effectively alleviate stress concentration during loading.This structural modification enhances the structural integrity and deformation stability under external loads,enabling a synergistic enhancement of load-bearing capacity and energy absorption performance.
基金supported by the National Natural Science Foundation of China (6202201562088101)+1 种基金Shanghai Municipal Science and Technology Major Project (2021SHZDZX0100)Shanghai Municip al Commission of Science and Technology Project (19511132101)。
文摘Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties in dealing with high dimensional time series target data, a threat assessment method based on self-attention mechanism and gated recurrent unit(SAGRU) is proposed. Firstly, a threat feature system including air combat situations and capability features is established. Moreover, a data augmentation process based on fractional Fourier transform(FRFT) is applied to extract more valuable information from time series situation features. Furthermore, aiming to capture key characteristics of battlefield evolution, a bidirectional GRU and SA mechanisms are designed for enhanced features.Subsequently, after the concatenation of the processed air combat situation and capability features, the target threat level will be predicted by fully connected neural layers and the softmax classifier. Finally, in order to validate this model, an air combat dataset generated by a combat simulation system is introduced for model training and testing. The comparison experiments show the proposed model has structural rationality and can perform threat assessment faster and more accurately than the other existing models based on deep learning.
文摘远程终端单元(remote terminal unit, RTU)是当前电网中最主要的测量终端,但是其量测量没有统一时标,更新频率低,而且存在不确定性的传输时延。而同步相量测量单元(phasor measurement unit, PMU)具有高同步、高精度等特点,成为电力系统中重要的数据采集装置。为协调利用这两种测量数据,首先归纳出RTU量测非同步的来源,分析了量测数据不同步对状态估计和潮流计算的影响,并给出了相关的验证结果。并提出基于能量交互算子的量测数据相关性分析方法。该方法应用同步数据间相关性最大的原理,利用PMU所产生的精确数据来同步RTU数据,为混合测量系统确定测量基准时刻。通过对IEEE39节点电网和广东83节点实际电网的仿真,结果表明该方法能有效校正量测数据非同步以及改善状态估计和潮流计算精度。