期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Unintentional modulation microstructure enlargement 被引量:2
1
作者 SUN Liting WANG Xiang HUANG Zhitao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期522-533,共12页
Radio frequency fingerprinting(RFF)is a technology that identifies the specific emitter of a received electromagnetic signal by external measurement of the minuscule hardware-level,device-specific imperfections.The RF... Radio frequency fingerprinting(RFF)is a technology that identifies the specific emitter of a received electromagnetic signal by external measurement of the minuscule hardware-level,device-specific imperfections.The RFF-related information is mainly in the form of unintentional modulation(UIM),which is subtle enough to be effectively imperceptible and is submerged in the intentional modulation(IM).It is necessary to minimize the influence of the IM and expand the slight differences between emitters for successful RFF.This paper proposes a UIM microstructure enlargement(UMME)method based on feature-level adaptive signal decomposition(ASD),accompanied by autocorrelation and cross-correlation analysis.The common IM part is evaluated by analyzing a newly-defined benchmark feature.Three different indexes are used to quantify the similarity,distance,and dependency of the RFF features from different devices.Experiments are conducted based on the real-world signals transmitted from 20 of the same type of radar in the same working mode.The visual image qualitatively shows the magnification of feature differences;different indicators quantitatively describe the changes in features.Compared with the original RFF feature,recognition results based on the Gaussian mixture model(GMM)classifier further validate the effectiveness of the proposed algorithm. 展开更多
关键词 radio frequency fingerprinting(RFF) unintentional modulation(UIM) adaptive signal decomposition(ASD) variational mode decomposition(VMD) similarity measurement
在线阅读 下载PDF
Specific emitter identification based on frequency and amplitude of the signal kurtosis
2
作者 ZHAO Yurui WANG Xiang +1 位作者 SUN Liting HUANG Zhitao 《Journal of Systems Engineering and Electronics》 2025年第2期333-343,共11页
Extensive experiments suggest that kurtosis-based fingerprint features are effective for specific emitter identification (SEI). Nevertheless, the lack of mechanistic explanation restricts the use of fingerprint featur... Extensive experiments suggest that kurtosis-based fingerprint features are effective for specific emitter identification (SEI). Nevertheless, the lack of mechanistic explanation restricts the use of fingerprint features to a data-driven technique and fur-ther reduces the adaptability of the technique to other datasets. To address this issue, the mechanism how the phase noise of high-frequency oscillators and the nonlinearity of power ampli-fiers affect the kurtosis of communication signals is investigated. Mathematical models are derived for intentional modulation (IM) and unintentional modulation (UIM). Analysis indicates that the phase noise of high-frequency oscillators and the nonlinearity of power amplifiers affect the kurtosis frequency and amplitude, respectively. A novel SEI method based on frequency and ampli-tude of the signal kurtosis (FA-SK) is further proposed. Simula-tion and real-world experiments validate theoretical analysis and also confirm the efficiency and effectiveness of the proposed method. 展开更多
关键词 communication emitter fingerprint feature KURTOSIS unintentional modulation(UIM) specific emitter identification(SEI).
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部