To improve the data rate of underwater acoustic frequency-hopped communications, frequency hopping is applied to different orders of fractional Fourier domain (FrFD), to enable non-intrusive, bandwidth-limited acousti...To improve the data rate of underwater acoustic frequency-hopped communications, frequency hopping is applied to different orders of fractional Fourier domain (FrFD), to enable non-intrusive, bandwidth-limited acoustic communications. An FrFD frequency-hopped communication method based on chirp modulation, namely multiple chirp shift keying-FrFD hopping (MCSK-FrFDH), is proposed for underwater acoustic channels. Validated by both simulations and experimental results, this method can reach a bandwidth efficiency twice more than conventional frequency-hopped methods with the same data rate and anti-multipath capability, suggesting that the proposed method achieves a better performance than the traditional frequency hopped communication in underwater acoustic communication channels. Results also show that in practical scenarios, the MCSK-FrFDH system with longer symbol length performs better at the low signal-to-noise ratio (SNR), while the system with larger frequency sweeping range performs better at a high SNR.展开更多
An adaptive channel estimation algorithm for the channel length is proposed to construct a channel estimation model suitable for orthogonal frequency division multiplexing(OFDM)underwater acoustic communication signal...An adaptive channel estimation algorithm for the channel length is proposed to construct a channel estimation model suitable for orthogonal frequency division multiplexing(OFDM)underwater acoustic communication signals for the dependence of traditional channel estimation algorithms on channel length information.This algorithm can be adopted to evaluate channel estimation quality in real time and to adaptively adjust the channel length of the channel estimation algorithm according to the evaluation result,which satisfies the need of accurate estimation of unknown underwater acoustic channels and communication application;based on the study on the relationship between the OFDM communication bit error rate and the subcarrier signal to noise ratio,a self-adjusting optimization scheme for OFDM subcarrier transmitting power is proposed,which realizes underwater communication with the low bit error rate through higher energy efficiency.The validity of the research content is verified through simulation and field experiments.展开更多
This paper addresses the extremal problem of the null subcarriers based Doppler scale estimation in underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) communication. The cost function cons...This paper addresses the extremal problem of the null subcarriers based Doppler scale estimation in underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) communication. The cost function constructed of the total energy of null subcarriers through discrete Fourier transform (DFT) is proposed. The frequencies of null subcarriers are identified from non-uniform Doppler shift at each tentative scaling factor. Then it is proved that the cost function can be fitted as a quadratic polynomial near the global minimum. An accurate Doppler scale estimation is achieved by the location of the global scarifying precision and increasing the computation minimum through polynomial interpolation, without complexity. A shallow water experiment is conducted to demonstrate the performance of the proposed method. Excellent performance results are obtained in ultrawideband UWA channels with a relative bandwidth of 67%, when the transmitter and the receiver are moving at a relative speed of 5 kn, which validates the proposed method.展开更多
Fountain codes are considered to be a promising coding technique in underwater acoustic communication(UAC) which is challenged with the unique propagation features of the underwater acoustic channel and the harsh ma...Fountain codes are considered to be a promising coding technique in underwater acoustic communication(UAC) which is challenged with the unique propagation features of the underwater acoustic channel and the harsh marine environment. And Luby transform(LT) codes are the first codes fully realizing the digital fountain concept. However, in conventional LT encoding/decoding algorithms, due to the imperfect coverage(IC) of input symbols and short cycles in the generator matrix, stopping sets would occur and terminate the decoding. Thus, the recovery probability is reduced,high coding overhead is required and decoding delay is increased.These issues would be disadvantages while applying LT codes in underwater acoustic communication. Aimed at solving those issues, novel encoding/decoding algorithms are proposed. First,a doping and non-uniform selecting(DNS) encoding algorithm is proposed to solve the IC and the generation of short cycles problems. And this can reduce the probability of stopping sets occur during decoding. Second, a hybrid on the fly Gaussian elimination and belief propagation(OFG-BP) decoding algorithm is designed to reduce the decoding delay and efficiently utilize the information of stopping sets. Comparisons via Monte Carlo simulation confirm that the proposed schemes could achieve better overall decoding performances in comparison with conventional schemes.展开更多
Time reversal mirror (TRM) can use the physical characteristics of the underwater acoustic (UWA) channel to focus on the desired user in multi-user UWA communication. The active average sound intensity (AASI) de...Time reversal mirror (TRM) can use the physical characteristics of the underwater acoustic (UWA) channel to focus on the desired user in multi-user UWA communication. The active average sound intensity (AASI) detector can estimate all azimuths of users with the same frequency band at the same time in order to achieve directional communication by vector combination. Space-division multiple access (SDMA) based on TRM combined with the AASI detector is proposed in this paper, which can make the capacity of the code division multiple access (CDMA) UWA system significantly increase. The simulation and lake test results show that the 7-user UWA multi-user system can achieve low bit error communication.展开更多
Aimed at the abominable influences to blind equaliza-tion algorithms caused by complex time-space variability existing in underwater acoustic channels, a new self-adjusting decision feedback equalization (DFE) algor...Aimed at the abominable influences to blind equaliza-tion algorithms caused by complex time-space variability existing in underwater acoustic channels, a new self-adjusting decision feedback equalization (DFE) algorithm adapting to different under-water acoustic channel environments is proposed by changing its central tap position. Besides, this new algorithm behaves faster convergence speed based on the analysis of equalizers’ working rules, which is more suitable to implement communications in dif-ferent unknown channels. Corresponding results and conclusions are validated by simulations and spot experiments.展开更多
With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels beca...With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels because it suffers from more serious multipath effect, fewer available bandwidths and quite complex noise. Since the signals experience a serious distortion after being transmitted through the underwater acoustic channel, the underwater acoustic communication experiences a high bit error rate (BER). To solve this problem, carrier waveform inter- displacement (CWlD) modulation is proposed. It has been proved that CWlD modulation is an effective method to decrease BER. The linear frequency modulation (LFM) carrier-waves are used in CWlD modulation. The performance of the communication using CWID modulation is sensitive to the change of the frequency band of LFM carrier-waves. The immune particle swarm optimization (IPSO) is introduced to search for the optimal frequency band of the LFM carrier-waves, due to its excellent performance in solving complicated optimization problems. The multi-objective and multi- peak optimization nature of the IPSO gives a suitable description of the relationship between the upper band and the lower band of the LFM carrier-waves. Simulations verify the improved perfor- mance and effectiveness of the optimization method.展开更多
基金supported by the National Natural Science Foundation of China(4137604041676024)
文摘To improve the data rate of underwater acoustic frequency-hopped communications, frequency hopping is applied to different orders of fractional Fourier domain (FrFD), to enable non-intrusive, bandwidth-limited acoustic communications. An FrFD frequency-hopped communication method based on chirp modulation, namely multiple chirp shift keying-FrFD hopping (MCSK-FrFDH), is proposed for underwater acoustic channels. Validated by both simulations and experimental results, this method can reach a bandwidth efficiency twice more than conventional frequency-hopped methods with the same data rate and anti-multipath capability, suggesting that the proposed method achieves a better performance than the traditional frequency hopped communication in underwater acoustic communication channels. Results also show that in practical scenarios, the MCSK-FrFDH system with longer symbol length performs better at the low signal-to-noise ratio (SNR), while the system with larger frequency sweeping range performs better at a high SNR.
基金supported by the National Natural Science Foundation of China(51679247)
文摘An adaptive channel estimation algorithm for the channel length is proposed to construct a channel estimation model suitable for orthogonal frequency division multiplexing(OFDM)underwater acoustic communication signals for the dependence of traditional channel estimation algorithms on channel length information.This algorithm can be adopted to evaluate channel estimation quality in real time and to adaptively adjust the channel length of the channel estimation algorithm according to the evaluation result,which satisfies the need of accurate estimation of unknown underwater acoustic channels and communication application;based on the study on the relationship between the OFDM communication bit error rate and the subcarrier signal to noise ratio,a self-adjusting optimization scheme for OFDM subcarrier transmitting power is proposed,which realizes underwater communication with the low bit error rate through higher energy efficiency.The validity of the research content is verified through simulation and field experiments.
基金supported by the National Natural Science Foundation of China(6120109661471137+4 种基金61501061)the Qing Lan Project of Jiangsu Province,the Science and Technology Program of Changzhou City(CJ20130026CE20135060CE20145055)the State Key Laboratory of Ocean Engineering(Shanghai Jiao Tong University)(1316)
文摘This paper addresses the extremal problem of the null subcarriers based Doppler scale estimation in underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) communication. The cost function constructed of the total energy of null subcarriers through discrete Fourier transform (DFT) is proposed. The frequencies of null subcarriers are identified from non-uniform Doppler shift at each tentative scaling factor. Then it is proved that the cost function can be fitted as a quadratic polynomial near the global minimum. An accurate Doppler scale estimation is achieved by the location of the global scarifying precision and increasing the computation minimum through polynomial interpolation, without complexity. A shallow water experiment is conducted to demonstrate the performance of the proposed method. Excellent performance results are obtained in ultrawideband UWA channels with a relative bandwidth of 67%, when the transmitter and the receiver are moving at a relative speed of 5 kn, which validates the proposed method.
基金supported by the National Natural Science Foundation of China(61371099)the Fundamental Research Funds for the Central Universities of China(HEUCF150812/150810)
文摘Fountain codes are considered to be a promising coding technique in underwater acoustic communication(UAC) which is challenged with the unique propagation features of the underwater acoustic channel and the harsh marine environment. And Luby transform(LT) codes are the first codes fully realizing the digital fountain concept. However, in conventional LT encoding/decoding algorithms, due to the imperfect coverage(IC) of input symbols and short cycles in the generator matrix, stopping sets would occur and terminate the decoding. Thus, the recovery probability is reduced,high coding overhead is required and decoding delay is increased.These issues would be disadvantages while applying LT codes in underwater acoustic communication. Aimed at solving those issues, novel encoding/decoding algorithms are proposed. First,a doping and non-uniform selecting(DNS) encoding algorithm is proposed to solve the IC and the generation of short cycles problems. And this can reduce the probability of stopping sets occur during decoding. Second, a hybrid on the fly Gaussian elimination and belief propagation(OFG-BP) decoding algorithm is designed to reduce the decoding delay and efficiently utilize the information of stopping sets. Comparisons via Monte Carlo simulation confirm that the proposed schemes could achieve better overall decoding performances in comparison with conventional schemes.
基金supported by the National Natural Science Foundation of China(6147113751179034)+3 种基金the Ships Pre-research Support Technology Fund(13J3.1.5)the Natural Science Foundation of Heilongjiang Province(F201109)the Innovation Talents of Science and the Technology Research Projects of Harbin(2013RFQXJ101)the National Defense Basic Technology Research(JSJC2013604C012)
文摘Time reversal mirror (TRM) can use the physical characteristics of the underwater acoustic (UWA) channel to focus on the desired user in multi-user UWA communication. The active average sound intensity (AASI) detector can estimate all azimuths of users with the same frequency band at the same time in order to achieve directional communication by vector combination. Space-division multiple access (SDMA) based on TRM combined with the AASI detector is proposed in this paper, which can make the capacity of the code division multiple access (CDMA) UWA system significantly increase. The simulation and lake test results show that the 7-user UWA multi-user system can achieve low bit error communication.
基金supported by the National Natural Science Foundation of China(61101205)the Natural Science Foundation of Hubei Province of China(2009CDB337)the Natural Science Foundation of Naval University of Engineering(HGDQNJJ13019)
文摘Aimed at the abominable influences to blind equaliza-tion algorithms caused by complex time-space variability existing in underwater acoustic channels, a new self-adjusting decision feedback equalization (DFE) algorithm adapting to different under-water acoustic channel environments is proposed by changing its central tap position. Besides, this new algorithm behaves faster convergence speed based on the analysis of equalizers’ working rules, which is more suitable to implement communications in dif-ferent unknown channels. Corresponding results and conclusions are validated by simulations and spot experiments.
基金supported by the National Natural Science Foundation of China(61172070,61111130122)the Innovative Research Team of Shaanxi Province(2013KCT-04)the Specialized Research Fund for the Doctoral Program of Higher Education(20126118110008)
文摘With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels because it suffers from more serious multipath effect, fewer available bandwidths and quite complex noise. Since the signals experience a serious distortion after being transmitted through the underwater acoustic channel, the underwater acoustic communication experiences a high bit error rate (BER). To solve this problem, carrier waveform inter- displacement (CWlD) modulation is proposed. It has been proved that CWlD modulation is an effective method to decrease BER. The linear frequency modulation (LFM) carrier-waves are used in CWlD modulation. The performance of the communication using CWID modulation is sensitive to the change of the frequency band of LFM carrier-waves. The immune particle swarm optimization (IPSO) is introduced to search for the optimal frequency band of the LFM carrier-waves, due to its excellent performance in solving complicated optimization problems. The multi-objective and multi- peak optimization nature of the IPSO gives a suitable description of the relationship between the upper band and the lower band of the LFM carrier-waves. Simulations verify the improved perfor- mance and effectiveness of the optimization method.