期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Monitoring of Wind Turbine Blades Based on Dual-Tree Complex Wavelet Transform 被引量:1
1
作者 LIU Rongmei ZHOU Keyin YAO Entao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第1期140-152,共13页
Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors ar... Structural health monitoring(SHM)in-service is very important for wind turbine system.Because the central wavelength of a fiber Bragg grating(FBG)sensor changes linearly with strain or temperature,FBG-based sensors are easily applied to structural tests.Therefore,the monitoring of wind turbine blades by FBG sensors is proposed.The method is experimentally proved to be feasible.Five FBG sensors were set along the blade length in order to measure distributed strain.However,environmental or measurement noise may cover the structural signals.Dual-tree complex wavelet transform(DT-CWT)is suggested to wipe off the noise.The experimental studies indicate that the tested strain fluctuate distinctly as one of the blades is broken.The rotation period is about 1 s at the given working condition.However,the period is about 0.3 s if all the wind blades are in good conditions.Therefore,strain monitoring by FBG sensors could predict damage of a wind turbine blade system.Moreover,the studies indicate that monitoring of one blade is adequate to diagnose the status of a wind generator. 展开更多
关键词 wind turbine blade structural health monitoring(SHM) fiber Bragg grating(FBG) dual-tree complex wavelet transform(DT-CWT)
在线阅读 下载PDF
Magnetic-resonance image segmentation based on improved variable weight multi-resolution Markov random field in undecimated complex wavelet domain 被引量:1
2
作者 Hong Fan Yiman Sun +3 位作者 Xiaojuan Zhang Chengcheng Zhang Xiangjun Li Yi Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第7期655-667,共13页
To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov rand... To solve the problem that the magnetic resonance(MR)image has weak boundaries,large amount of information,and low signal-to-noise ratio,we propose an image segmentation method based on the multi-resolution Markov random field(MRMRF)model.The algorithm uses undecimated dual-tree complex wavelet transformation to transform the image into multiple scales.The transformed low-frequency scale histogram is used to improve the initial clustering center of the K-means algorithm,and then other cluster centers are selected according to the maximum distance rule to obtain the coarse-scale segmentation.The results are then segmented by the improved MRMRF model.In order to solve the problem of fuzzy edge segmentation caused by the gray level inhomogeneity of MR image segmentation under the MRMRF model,it is proposed to introduce variable weight parameters in the segmentation process of each scale.Furthermore,the final segmentation results are optimized.We name this algorithm the variable-weight multi-resolution Markov random field(VWMRMRF).The simulation and clinical MR image segmentation verification show that the VWMRMRF algorithm has high segmentation accuracy and robustness,and can accurately and stably achieve low signal-to-noise ratio,weak boundary MR image segmentation. 展开更多
关键词 undecimated dual-tree complex wavelet MR image segmentation multi-resolution Markov random field model
在线阅读 下载PDF
Recognition of Group Activities Using Complex Wavelet Domain Based Cayley-Klein Metric Learning
3
作者 Gensheng Hu Min Li +2 位作者 Dong Liang Mingzhu Wan Wenxia Bao 《Journal of Beijing Institute of Technology》 EI CAS 2018年第4期592-603,共12页
A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning.Non-sampled dual-tree complex wavelet pac... A group activity recognition algorithm is proposed to improve the recognition accuracy in video surveillance by using complex wavelet domain based Cayley-Klein metric learning.Non-sampled dual-tree complex wavelet packet transform(NS-DTCWPT)is used to decompose the human images in videos into multi-scale and multi-resolution.An improved local binary pattern(ILBP)and an inner-distance shape context(IDSC)combined with bag-of-words model is adopted to extract the decomposed high and low frequency coefficient features.The extracted coefficient features of the training samples are used to optimize Cayley-Klein metric matrix by solving a nonlinear optimization problem.The group activities in videos are recognized by using the method of feature extraction and Cayley-Klein metric learning.Experimental results on behave video set,group activity video set,and self-built video set show that the proposed algorithm has higher recognition accuracy than the existing algorithms. 展开更多
关键词 video surveillance group activity recognition non-sampled dual-tree complex wavelet packet transform(NS-DTCWPT) Cayley-Klein metric learning
在线阅读 下载PDF
Underwater Gas Leakage Flow Detection and Classification Based on Multibeam Forward-Looking Sonar
4
作者 Yuanju Cao Chao Xu +3 位作者 Jianghui Li Tian Zhou Longyue Lin Baowei Chen 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期674-687,共14页
The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring ... The risk of gas leakage due to geological flaws in offshore carbon capture, utilization, and storage, as well as leakage from underwater oil or gas pipelines, highlights the need for underwater gas leakage monitoring technology. Remotely operated vehicles(ROVs) and autonomous underwater vehicles(AUVs) are equipped with high-resolution imaging sonar systems that have broad application potential in underwater gas and target detection tasks. However, some bubble clusters are relatively weak scatterers, so detecting and distinguishing them against the seabed reverberation in forward-looking sonar images are challenging. This study uses the dual-tree complex wavelet transform to extract the image features of multibeam forward-looking sonar. Underwater gas leakages with different flows are classified by combining deep learning theory. A pool experiment is designed to simulate gas leakage, where sonar images are obtained for further processing. Results demonstrate that this method can detect and classify underwater gas leakage streams with high classification accuracy. This performance indicates that the method can detect gas leakage from multibeam forward-looking sonar images and has the potential to predict gas leakage flow. 展开更多
关键词 Carbon capture utilization and storage(CCUS) Gas leakage Forward-looking sonar dual-tree complex wavelet transform(DT-CWT) Deep learning
在线阅读 下载PDF
基于双树复小波和奇异差分谱的齿轮故障诊断研究 被引量:13
5
作者 胥永刚 孟志鹏 +1 位作者 陆明 付胜 《振动与冲击》 EI CSCD 北大核心 2014年第1期11-16,23,共7页
针对齿轮故障振动信号的非平稳特性和包含强烈噪声,很难提取故障特征频率的情况,提出了基于双树复小波和奇异差分谱的故障诊断方法。首先将非平稳的故障振动信号通过双树复小波分解为几个不同频段的分量;由于噪声的影响,从各个分量的频... 针对齿轮故障振动信号的非平稳特性和包含强烈噪声,很难提取故障特征频率的情况,提出了基于双树复小波和奇异差分谱的故障诊断方法。首先将非平稳的故障振动信号通过双树复小波分解为几个不同频段的分量;由于噪声的影响,从各个分量的频谱中难以准确地得到故障频率。然后对包含故障特征的分量构建Hankel矩阵并进行奇异值分解,求奇异值差分谱曲线,确定奇异值个数进行SVD重构降噪,由此实现对故障特征信息的提取。最后再求希尔伯特包络谱,便能准确地得到故障频率。实验结果和工程应用表明,该方法可以有效地提取齿轮的故障特征信息,验证了方法的可行性和有效性。 展开更多
关键词 双树复小波 HANKEL矩阵 奇异值 奇异差分谱 故障诊断 dual-tree complex wavelet transform (DT-CWT ) singular value decomposition (SVD)
在线阅读 下载PDF
非抽样双树复小波域的BPP-NMF图像融合 被引量:1
6
作者 陈清江 魏冰蔗 +1 位作者 柴昱洲 张彦博 《液晶与显示》 CAS CSCD 北大核心 2016年第8期784-792,共9页
提出了一种非抽样双树复小波变换(UDT-CWT)与基于块主元旋转的非负矩阵分解(BPP-NMF)相结合的多聚焦图像融合算法。利用UDT-CWT具有完美的平移不变性及良好的方向选择性,首先对图像进行多尺度、多方向分解并得到低频子带和高频子带系数... 提出了一种非抽样双树复小波变换(UDT-CWT)与基于块主元旋转的非负矩阵分解(BPP-NMF)相结合的多聚焦图像融合算法。利用UDT-CWT具有完美的平移不变性及良好的方向选择性,首先对图像进行多尺度、多方向分解并得到低频子带和高频子带系数;然后对低频子带系数采用块主元旋转的非负矩阵分解的融合策略,高频系数则选用高斯加权区域能量与区域标准差一致性选择的融合准则。最后对融合后的系数进行UDT-CWT逆变换得到重构图像。选用多组多聚焦图像进行融合并对融合结果进行主观视觉、客观方面的评价。试验结果表明,该融合算法不仅具有良好的视觉效果,同时在客观评价指标也优于一般的融合策略,验证了该算法的有效性。 展开更多
关键词 非抽样双树复小波变换 非负矩阵分解 块主元旋转法 加权区域能量 图像融合
在线阅读 下载PDF
基于非抽样双树复小波变换幅值相位信息的图像去噪算法 被引量:2
7
作者 吴建宁 石满红 兴志 《红外技术》 CSCD 北大核心 2018年第7期647-653,共7页
提出了一种非抽样双树复小波变换域结合幅值阈值化和相位正则化的自适应图像去噪算法。首先将非抽样双树复小波变换系数进行幅值相位表示,在分析了幅值分布特点后,使用瑞利分布模型作为系数幅值的先验分布,然后在贝叶斯去噪框架下推导... 提出了一种非抽样双树复小波变换域结合幅值阈值化和相位正则化的自适应图像去噪算法。首先将非抽样双树复小波变换系数进行幅值相位表示,在分析了幅值分布特点后,使用瑞利分布模型作为系数幅值的先验分布,然后在贝叶斯去噪框架下推导出闭式形式的阈值函数,为了更好地抑制噪声,我们亦对相位信息进行平滑处理,最后通过逆非抽样双树复小波变换得到去噪图像。由于同时对幅值和相位信息进行处理,实验显示所提算法抑制噪声效果明显,与一些经典算法相比,本文方法在主、客观上皆获得了有竞争力的结果。 展开更多
关键词 图像去噪 非抽样双树复小波变换 瑞利分布模型 相位正则化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部