To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation...To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation weights.The comprehensive attribute weights are gotten through the product of the above three kinds of weights.And each decision maker's weighted decision matrices are also received by using the integrated attribute weights.The closeness degrees are also gotten by use of technique for order preference by similarity to ideal solution(TOPSIS) through dealing with the weighted decision matrices.At the same time the group decision matrix and weighted group decision matrix are gotten by using each decision-maker's closeness degree to every project.Then the vertical TOPSIS method is used to calculate the closeness degree of each project.So these projects can be ranked according to their values of the closeness degree.The process of the method is also given step by step.Finally,a numerical example demonstrates the feasibility and effectiveness of the approach.展开更多
A method is proposed to deal with the uncertain multiple attribute group decision making problems,where 2-dimension uncertain linguistic variables(2DULVs)are used as the reliable way for the experts to express their f...A method is proposed to deal with the uncertain multiple attribute group decision making problems,where 2-dimension uncertain linguistic variables(2DULVs)are used as the reliable way for the experts to express their fuzzy subjective evaluation information.Firstly,in order to measure the 2DULVs more accurately,a new method is proposed to compare two 2DULVs,called a score function,while a new function is defined to measure the distance between two 2DULVs.Secondly,two optimization models are established to determine the weight of experts and attributes based on the new distance formula and a weighted average operator is used to determine the comprehensive evaluation value of each alternative.Then,a score function is used to determine the ranking of the alternatives.Finally,the effectiveness of the proposed method is proved by an illustrated example.展开更多
The uncertain multi-attribute decision-making problems because of the information about attribute weights being known partly, and the decision maker's preference information on alternatives taking the form of interva...The uncertain multi-attribute decision-making problems because of the information about attribute weights being known partly, and the decision maker's preference information on alternatives taking the form of interval numbers complementary to the judgment matrix, are investigated. First, the decision-making information, based on the subjective uncertain complementary preference matrix on alternatives is made uniform by using a translation function, and then an objective programming model is established. The attribute weights are obtained by solving the model, thus the overall values of the alternatives are gained by using the additive weighting method. Second, the alternatives are ranked, by using the continuous ordered weighted averaging (C-OWA) operator. A new approach to the uncertain multi-attribute decision-making problems, with uncertain preference information on alternatives is proposed. It is characterized by simple operations and can be easily implemented on a computer. Finally, a practical example is illustrated to show the feasibility and availability of the developed method.展开更多
Two interval-valued intuitionistic uncertain linguistic hybrid operators cal ed the induced interval-valued intuitionistic uncertain linguistic hybrid Shapley averaging (I-IIULHSA) operator and the induced interval-...Two interval-valued intuitionistic uncertain linguistic hybrid operators cal ed the induced interval-valued intuitionistic uncertain linguistic hybrid Shapley averaging (I-IIULHSA) operator and the induced interval-valued intuitionistic uncertain linguistic hybrid Shapley geometric (I-IIULHSG) operator are defined. These operators not only reflect the importance of elements and their ordered positions, but also consider the correlations among elements and their ordered positions. Since the fuzzy measures are defined on the power set, it makes the problem exponentially complex. In order to simplify the complexity of solving a fuzzy measure, we further define the induced interval-valued intuitionistic uncertain linguistic hybrid λ-Shapley averaging (I-IIULHλSA) operator and the induced interval-valued intuitionistic uncertain linguistic hybrid λ-Shapley geometric (I-IIULHλSG) operator. Moreover, an approach for multi-attribute group decision making under the interval-valued intuitionistic uncertain linguistic environment is developed. Finally, a numerical example is provided to verify the developed procedure and demonstrate its practicality and feasibility.展开更多
基金supported by the Research Innovation Project of Shanghai Education Committee (08YS19)the Excellent Young Teacher Project of Shanghai University
文摘To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation weights.The comprehensive attribute weights are gotten through the product of the above three kinds of weights.And each decision maker's weighted decision matrices are also received by using the integrated attribute weights.The closeness degrees are also gotten by use of technique for order preference by similarity to ideal solution(TOPSIS) through dealing with the weighted decision matrices.At the same time the group decision matrix and weighted group decision matrix are gotten by using each decision-maker's closeness degree to every project.Then the vertical TOPSIS method is used to calculate the closeness degree of each project.So these projects can be ranked according to their values of the closeness degree.The process of the method is also given step by step.Finally,a numerical example demonstrates the feasibility and effectiveness of the approach.
基金This work was supported by the Natural Science Foundation of Liaoning Province(2013020022).
文摘A method is proposed to deal with the uncertain multiple attribute group decision making problems,where 2-dimension uncertain linguistic variables(2DULVs)are used as the reliable way for the experts to express their fuzzy subjective evaluation information.Firstly,in order to measure the 2DULVs more accurately,a new method is proposed to compare two 2DULVs,called a score function,while a new function is defined to measure the distance between two 2DULVs.Secondly,two optimization models are established to determine the weight of experts and attributes based on the new distance formula and a weighted average operator is used to determine the comprehensive evaluation value of each alternative.Then,a score function is used to determine the ranking of the alternatives.Finally,the effectiveness of the proposed method is proved by an illustrated example.
文摘The uncertain multi-attribute decision-making problems because of the information about attribute weights being known partly, and the decision maker's preference information on alternatives taking the form of interval numbers complementary to the judgment matrix, are investigated. First, the decision-making information, based on the subjective uncertain complementary preference matrix on alternatives is made uniform by using a translation function, and then an objective programming model is established. The attribute weights are obtained by solving the model, thus the overall values of the alternatives are gained by using the additive weighting method. Second, the alternatives are ranked, by using the continuous ordered weighted averaging (C-OWA) operator. A new approach to the uncertain multi-attribute decision-making problems, with uncertain preference information on alternatives is proposed. It is characterized by simple operations and can be easily implemented on a computer. Finally, a practical example is illustrated to show the feasibility and availability of the developed method.
基金supported by the National Natural Science Foundation of China(71201089)the Natural Science Foundation Youth Project of Shandong Province(ZR2012GQ005)
文摘Two interval-valued intuitionistic uncertain linguistic hybrid operators cal ed the induced interval-valued intuitionistic uncertain linguistic hybrid Shapley averaging (I-IIULHSA) operator and the induced interval-valued intuitionistic uncertain linguistic hybrid Shapley geometric (I-IIULHSG) operator are defined. These operators not only reflect the importance of elements and their ordered positions, but also consider the correlations among elements and their ordered positions. Since the fuzzy measures are defined on the power set, it makes the problem exponentially complex. In order to simplify the complexity of solving a fuzzy measure, we further define the induced interval-valued intuitionistic uncertain linguistic hybrid λ-Shapley averaging (I-IIULHλSA) operator and the induced interval-valued intuitionistic uncertain linguistic hybrid λ-Shapley geometric (I-IIULHλSG) operator. Moreover, an approach for multi-attribute group decision making under the interval-valued intuitionistic uncertain linguistic environment is developed. Finally, a numerical example is provided to verify the developed procedure and demonstrate its practicality and feasibility.