The chlorinated and fluorinated zeolite catalysts were prepared by the impregnation of zeolites( H-ZSM-5,H-MOR or H-Y) using two halogen precursors( ammonium chloride and ammonium fluoride) in this study. The influenc...The chlorinated and fluorinated zeolite catalysts were prepared by the impregnation of zeolites( H-ZSM-5,H-MOR or H-Y) using two halogen precursors( ammonium chloride and ammonium fluoride) in this study. The influence of ultrasonic irradiation was evaluated for optimizing both halogen precursors for production of dimethylether( DME) via methanol dehydration in a fixed bed reactor. The catalysts were characterized by SEM,XRD,BET and NH3-TPD. The reaction conditions were temperatures from 100 to 300 ℃ and a WHSV = 15. 9 h-1. All halogenated catalysts showhigher catalytic activities at all reaction temperatures studied. However, the halogenated zeolite catalysts prepared under ultrasonic irradiation showhigher performance for DME formation. The chlorinated zeolite catalysts show higher activity and selectivity for DME production than the respective fluorinated versions.展开更多
针对具有特殊要求的高难度电子电气部件,巴斯夫现已研发出高流动性的Ultrason D 1010 G6 U40。这款基于聚醚砜(PESU)开发的共混物,可以满足应用于数据与能量传输、智能电子产品以及电动汽车中的高效节能部件的特殊注塑要求。这款全新的...针对具有特殊要求的高难度电子电气部件,巴斯夫现已研发出高流动性的Ultrason D 1010 G6 U40。这款基于聚醚砜(PESU)开发的共混物,可以满足应用于数据与能量传输、智能电子产品以及电动汽车中的高效节能部件的特殊注塑要求。这款全新的巴斯夫热塑性塑料即使在较低加工温度下依然具有出色的流动性,使精密开关、断路器、传感器、IGBT和老化测试插座等半导体部件的制造商拥有更多设计自由。Ultrason D 1010 G6 U40在高温环境下电气性能稳定,具有较高的相对温度指数(RTI),其相对漏电起痕指数(CTI)值相较于聚醚酰亚胺(PEI)和聚苯硫醚(PPS)也更高。相较于标准规格的PESU而言,注塑厂用此款新型共混物可将熔体温度降低12.5%,节省能源成本的同时又不影响其出色的流动性。展开更多
Effects of ultrasonic bonding parameters on atomic diffusion, microstructure at the Al-Au interface, and shear strength of Al-Au ultrasonic bonding were investigated by the combining experiments and finite element (FE...Effects of ultrasonic bonding parameters on atomic diffusion, microstructure at the Al-Au interface, and shear strength of Al-Au ultrasonic bonding were investigated by the combining experiments and finite element (FE) simulation. The quantitative model of atomic diffusion, which is related to the ultrasonic bonding parameters, time and distance, is established to calculate the atomic diffusion of the Al-Au interface. The maximum relative error between the calculated and experimental fraction of Al atom is 7.35%, indicating high prediction accuracy of this model. During the process of ultrasonic bonding, Au8Al3 is the main intermetallic compound (IMC) at the Al-Au interface. With larger bonding forces, higher ultrasonic powers and longer bonding time, it is more difficult to remove the oxide particles from the Al-Au interface, which hinders the atomic diffusion. Therefore, the complicated stress state and the existence of oxide particles both promotes the formation of holes. The shear strength of Al-Au ultrasonic bonding increases with increasing bonding force, ultrasonic power and bonding time. However, combined with the presence of holes at especial parameters, the optimal ultrasonic bonding parameter is confirmed to be a bonding force of 23 gf, ultrasonic power of 75 mW and bonding time of 21 ms.展开更多
In this work,the effect of ultrasonic vibration modes on the mechanical properties and relaxation of residual stress in 6061-T6 aluminum alloy was studied.A new ultrasonic vibration Johnson-Cook model was proposed,and...In this work,the effect of ultrasonic vibration modes on the mechanical properties and relaxation of residual stress in 6061-T6 aluminum alloy was studied.A new ultrasonic vibration Johnson-Cook model was proposed,and the relaxation and distribution of residual stress under ultrasonic vibration were predicted and analyzed using the finite element method(FEM).The mechanical properties of 6061-T6 aluminum alloy under different ultrasonic vibration modes were analyzed through experiments involving notched specimen tensile testing and scanning electron microscopy(SEM)analysis.The findings indicate that ultrasonic vibration treatment during deformation,unloading,and load-holding,as well as treatment with its natural ultrasonic frequency,can effectively release residual stress;however,treatment with its natural frequency has the highest rate of release up to 65.4%.Ultrasonic vibration treatment during deformation better inhibits fracture under the same conditions.The FEM results are in good agreement with the experimental results,and it can be used as a valid tool for predicting residual stress release under ultrasonic vibration.展开更多
In this work,ultrasonic energy field assistance combined with tempering treatment is proposed to improve the microstructure and mechanical properties of A517Q alloy steel fabricated by laser directed energy deposition...In this work,ultrasonic energy field assistance combined with tempering treatment is proposed to improve the microstructure and mechanical properties of A517Q alloy steel fabricated by laser directed energy deposition(LDED).The effects of ultrasonic vibration(UV)and tempering treatment on microstructure evolution,microhardness distribution and mechanical properties of deposition layer were studied in detail.The microstructure of UV assisted LDED sample after tempering is mainly composed of tempered sorbite(TS).Due to the improvement of microstructure inhomogeneity and grains refinement,UV assisted LDED sample with tempering treatment obtains excellent mechanical properties.The ultimate tensile strength(UTS),yield strength(YS)and elongation after breaking(EL)reach 765 MPa,657 MPa and 19.5%,the increase ratios of UTS and YS are 14.5%and 33.8%while maintaining plasticity compared to original LDED sample,respectively.It is obvious that ultrasonic vibration combined with tempering is a potential and effective method to obtain uniform microstructure and excellent mechanical properties in metal laser directed energy deposition field.展开更多
Ultrasonic extraction technique was used to extract perflurooctanoic acid (PFOA) and its salts from fluro-paints.The extract was quantified after filtration and concentration by gas chromatography-mass (GC-MS) method ...Ultrasonic extraction technique was used to extract perflurooctanoic acid (PFOA) and its salts from fluro-paints.The extract was quantified after filtration and concentration by gas chromatography-mass (GC-MS) method using perflurodecanoic acid methyl ester as an internal standard.The GC-MS conditions were: HP-Innowax capillary column; oven temperature,50℃(5 min)30℃/min240℃(5 min); splittless mode; injection volume,1μL; negative chemical ion source,reacting gas,CH4,20%; select ion scan mode (SIM);Line range was 1.0-1.0×105 μg/L; the correlation coefficient was 0.999; the low limit of detection (LOD) was 0.1 μg/L.The RSD was 4.24% and 3.58% respectively for low and high concentration of PFOA,and the average recovery was between 86%-111%.展开更多
Ionic liquids ( ILs) based ultrasonic-assisted extract has been applied for the extraction of essential oil from Persicaria minor leaves. The effects of temperature,sonication time,and particle size of the plant mater...Ionic liquids ( ILs) based ultrasonic-assisted extract has been applied for the extraction of essential oil from Persicaria minor leaves. The effects of temperature,sonication time,and particle size of the plant material on the yield of essential oil were investigated. Among the different ILs employed,1-ethyl-3-methyli midazolium acetate was the most effective,providing a 9. 55% yield of the essential oil under optimum conditions( 70 ℃,25 min,IL ∶hexane ratio of 7 ∶10 ( v /v) ,particle size 60-80 mesh) . The performance of 1-ethyl-3-methylimidazolium acetate in the extraction was attributed to its lowviscosity and ability to disintegrate the structural matrix of the plant material. The ability of 1-ethyl-3-methylimidazolium acetate was also confirmed using the conductor like-screening model for realistic solvents. This research proves that ILs can be used to extract essential oils from lignocellulosic biomass.展开更多
With the experiment and finite element simulation, the influences of power ultrasonic on the solidification structure of 7050 aluminum alloy ingot in semi-continuous casting were researched, and the effects of casting...With the experiment and finite element simulation, the influences of power ultrasonic on the solidification structure of 7050 aluminum alloy ingot in semi-continuous casting were researched, and the effects of casting speed on solidification structure in ultrasonic field were also analyzed. The experiment and simulation results show that the solidification structure of the ingot is homogeneously distributed, and its grain size is obviously refined at ultrasonic power of 240 W. The average grain sizes, which can be seen from the Leica microscope, are less than 100 μm. When the casting speed is 45-50 mm/min, the best grain refinement is obtained.展开更多
Ultrasonic vibration can reduce the forming force, decrease the friction in the metal forming process and improve the surface quality of the workpiece effectively. Tensile tests of AZ31 magnesium alloy were carried ou...Ultrasonic vibration can reduce the forming force, decrease the friction in the metal forming process and improve the surface quality of the workpiece effectively. Tensile tests of AZ31 magnesium alloy were carried out. The stress–strain relationship, fracture modes of tensile specimens, microstructure and microhardness under different vibration conditions were analyzed, in order to study the effects of the ultrasonic vibration on microstructure and performance of AZ31 magnesium alloy under tensile deformation. The results showed that the different reductions of the true stress appeared under various ultrasonic vibration conditions, and the maximum decreasing range was 4.76%. The maximum microhardness difference among the 3 nodes selected along the specimen was HV 10.9. The fracture modes, plasticity and microstructure of AZ31 magnesium alloy also were affected by amplitude and action time of the ultrasonic vibration. The softening effect and the hardening effect occurred simultaneously when the ultrasonic vibration was applied. When the ultrasonic amplitude was 4.6 μm with short action time, the plastic deformation was dominated by twins and the softening effect was dominant. However, the twinning could be inhibited and the hardening effect became dominant in the case of high ultrasonic energy.展开更多
In many fields of high-tech industry the ultra-t hi n wall parts are employed. In this paper the experiments were carried out to dis cuss the surface microstructure of the camera’s guided drawtube by applying ult ras...In many fields of high-tech industry the ultra-t hi n wall parts are employed. In this paper the experiments were carried out to dis cuss the surface microstructure of the camera’s guided drawtube by applying ult rasonic vibration cutting device to the traditional lathe. The influence rule of the cutting condition on the surface roughness was put forward, which was drawn by comparing the ultrasonic cutting with the common cutting by use of the cemen ted carbide tool and the polycrystalline diamond (PCD) tool. The test results sh owed that the ultrasonic cutting performs better than the common cutting in the same condition. According to the test results analyzing, the surface characteriz ation is influenced clearly by the rigidity of the acoustic system and the machi ne tool, as well the setting height of the tool tip. Otherwise, the dense regula r low frequency vibration ripples will be scraped on the machined surface. When the tool tip is set higher than the rotating center of the work piece by three t imes of the amplitude of ultrasonic vibration, the vibration ripples behave alig ht; they turn light and shade alternatively when the tool tip is lower than the rotating center of the work piece by three times of the amplitude of ultrasonic vibration. According to the test result analyzing, the following conclusions are put forward: 1) The surface roughness in ultrasonic cutting is better than that in common cutting. Under a one third critical cutting velocity, the value of th e surface roughness in ultrasonic cutting rise slightly along with the cutting v elocity, while in common cutting it decreases contrast to the cutting velocity; the curves of the surface roughness in ultrasonic cutting and common cutting see m to be alike, both increase along with the feed rate and the cutting depth, but the value in ultrasonic cutting is smaller in the same condition.2) The influen ce of the coolant on the surface roughness cannot be ignored. The kerosene can b e employed to improve the surface roughness in ultrasonic machining.3) In ultras onic cutting process of aluminum alloy ultra-thin wall work piece, the PCD tool performs better than the cemented carbide tools.4) The vibration ripples result from the not enough rigidity of the acoustic system and the improper setting he ight of the tool tip. The departure of the tool tip from the rotating center of the work piece to some extent causes the vibration ripples on the machined surfa ce.展开更多
The experiment of ultrasonic treatment of roll casting aluminum strip on plane twin-roll cast-roller with double-heads ultrasonic tools was carried out, and the metallographic structure of the roll casting aluminum st...The experiment of ultrasonic treatment of roll casting aluminum strip on plane twin-roll cast-roller with double-heads ultrasonic tools was carried out, and the metallographic structure of the roll casting aluminum strip treated by ultrasonic was studied. The results show that ultrasonic treatment can refine the grain of the roll casting aluminum strips and make the structure of the strips more homogeneous. The effect is the best when the power of ultrasonic is 300 W and the incident angle of the guide rod is 45、. The mechanism of acoustic cavitations and acoustic flow on grain refinement was also discussed. The heat effect of intensity ultrasonic was studied. The present problems during ultrasonic roll casting process, such as the imperfect cooling system, the inaccurate calculation of ultrasonic energy, and the shape and position of the guide rod to be improved were pointed out.展开更多
The forming performance of sheet metals in the deep-drawing process with ultrasonic vibrations can be improved by the surface effect between the sheet metal and the die.A sheet metal friction test with ultrasonic vibr...The forming performance of sheet metals in the deep-drawing process with ultrasonic vibrations can be improved by the surface effect between the sheet metal and the die.A sheet metal friction test with ultrasonic vibrations is performed to explore the cause of the surface effect.The frictional characteristics are investigated,and the corresponding friction expressions are established based on the contact mechanics and the elastic–plastic contact model for rough surfaces.Friction is caused by the elastic–plastic deformation of contacting asperities under normal loads.The actual contacting region between two surfaces increases with normal loads,whereas the normal distance decreases.The normal distance between the contacting surfaces is changed,asperities generate a tangential deformation with ultrasonic vibrations,and the friction coefficient is eventually altered.Ultrasonic vibrations are applied on a 40Cr steel punch at the frequency of 20 kHz and the amplitude of 4.2μm.In the friction tests,the punch is perpendicular to the surface of the magnesium alloy AZ31B sheet metals and is sliding with a relative velocity of 1 mm/s.The test results show that the friction coefficient is decreased by approximately 40%and the theoretical values are in accordance with the test values;Ultrasonic vibrations can clearly reduce wear and improve the surface quality of parts.展开更多
Pre-knowledge of machined surface roughness is the key to improve whole machining efficiency and meanwhile reduce the expenditure in machining optical glass components.In order to predict the surface roughness in ultr...Pre-knowledge of machined surface roughness is the key to improve whole machining efficiency and meanwhile reduce the expenditure in machining optical glass components.In order to predict the surface roughness in ultrasonic vibration assisted grinding of brittle materials,the surface morphologies of grinding wheel were obtained firstly in the present work,the grinding wheel model was developed and the abrasive trajectories in ultrasonic vibration assisted grinding were also investigated,the theoretical model for surface roughness was developed based on the above analysis.The prediction model was developed by using Gaussian processing regression(GPR)due to the influence of brittle fracture on machined surface roughness.In order to validate both the proposed theoretical and GPR models,32sets of experiments of ultrasonic vibration assisted grinding of BK7optical glass were carried out.Experimental results show that the average relative errors of the theoretical model and GPR prediction model are13.11%and8.12%,respectively.The GPR prediction results can match well with the experimental results.展开更多
A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to ...A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to realize the optimal design of the butterfly-shaped linear ultrasonic motor. First, the operation principle of the motor was introduced. Second, the finite element parameterized model of the stator of the motor was built using ANSYS parametric design language and some structure parameters of the stator were selected as design variables. Third, the sample points were selected in design variable space using latin hypercube Design. Through modal analysis and harmonic response analysis of the stator based on these sample points, the target responses were obtained. These sample points and response values were combined together to build a response surface model. Finally, the simplex method was used to find the optimal solution. The experimental results showed that many aspects of the design requirements of the butterfly-shaped linear ultrasonic motor have been fulfilled. The prototype motor fabricated based on the optimal design result exhibited considerably high dynamic performance, such as no-load speed of 873 ram/s, maximal thrust of 27.5 N, maximal efficiency of 43%, and thrust-weight ratio of 45.8.展开更多
The effect of an ultrasonic field on the microstructure and mechanical properties of 7085 aluminum alloy during solidification was investigated by optical microscopy, Vickers hardness test, tensile test, scanning elec...The effect of an ultrasonic field on the microstructure and mechanical properties of 7085 aluminum alloy during solidification was investigated by optical microscopy, Vickers hardness test, tensile test, scanning electron microscopy (SEM) with energy dispersive X-ray spectrometry, and electron probe micro-analysis (EPMA). The results showed that the grains of aluminum alloy were significantly refined and secondary phases were dispersed and distributed uniformly at the grain boundaries, due to ultrasonic treatment (UST). By EPMA, it was observed that the distribution of the main elements A1, Zn, Mg and Cu was more homogeneous in alloys with UST, than in alloys without UST. The mechanical properties of the aluminum alloy also significantly improved. As demonstrated by the SEM fractography of the fractured faces of several castings, fracture of the unrefined specimens occurred in a brittle manner, whereas the cracks of the refined specimens showed quasi-cleavage fracture.展开更多
A new method is proposed to suppress chatter, in which the ultrasonic elliptical vibration is added on the cutting tool edge. It results in the fact that the rake face of tool is separated from the chip and the direct...A new method is proposed to suppress chatter, in which the ultrasonic elliptical vibration is added on the cutting tool edge. It results in the fact that the rake face of tool is separated from the chip and the direction of the frictional force between the rake face and the chip is reversed in each cycle of elliptical vibration cutting. The experimental investigations show that the chatter can be suppressed effectively by adding ultrasonic elliptical vibration on the cutting tool edge. In order to make clear the reason of chatter suppression, the mechanism of chatter suppression is analyzed theoretically from the viewpoint of energy.展开更多
文摘The chlorinated and fluorinated zeolite catalysts were prepared by the impregnation of zeolites( H-ZSM-5,H-MOR or H-Y) using two halogen precursors( ammonium chloride and ammonium fluoride) in this study. The influence of ultrasonic irradiation was evaluated for optimizing both halogen precursors for production of dimethylether( DME) via methanol dehydration in a fixed bed reactor. The catalysts were characterized by SEM,XRD,BET and NH3-TPD. The reaction conditions were temperatures from 100 to 300 ℃ and a WHSV = 15. 9 h-1. All halogenated catalysts showhigher catalytic activities at all reaction temperatures studied. However, the halogenated zeolite catalysts prepared under ultrasonic irradiation showhigher performance for DME formation. The chlorinated zeolite catalysts show higher activity and selectivity for DME production than the respective fluorinated versions.
文摘针对具有特殊要求的高难度电子电气部件,巴斯夫现已研发出高流动性的Ultrason D 1010 G6 U40。这款基于聚醚砜(PESU)开发的共混物,可以满足应用于数据与能量传输、智能电子产品以及电动汽车中的高效节能部件的特殊注塑要求。这款全新的巴斯夫热塑性塑料即使在较低加工温度下依然具有出色的流动性,使精密开关、断路器、传感器、IGBT和老化测试插座等半导体部件的制造商拥有更多设计自由。Ultrason D 1010 G6 U40在高温环境下电气性能稳定,具有较高的相对温度指数(RTI),其相对漏电起痕指数(CTI)值相较于聚醚酰亚胺(PEI)和聚苯硫醚(PPS)也更高。相较于标准规格的PESU而言,注塑厂用此款新型共混物可将熔体温度降低12.5%,节省能源成本的同时又不影响其出色的流动性。
基金Project(2022YFB3707201) supported by the National Key R&D Program of ChinaProject(U2341254) supported by the Ye Qisun Science Foundation of National Natural Science Foundation of China+1 种基金Projects(0604022GH0202143,0604022SH0201143) supported by the NPU Aoxiang Distinguished Young Scholars,ChinaProject supported by the Funding of Young Top-notch Talent of the National Ten Thousand Talent Program,China。
文摘Effects of ultrasonic bonding parameters on atomic diffusion, microstructure at the Al-Au interface, and shear strength of Al-Au ultrasonic bonding were investigated by the combining experiments and finite element (FE) simulation. The quantitative model of atomic diffusion, which is related to the ultrasonic bonding parameters, time and distance, is established to calculate the atomic diffusion of the Al-Au interface. The maximum relative error between the calculated and experimental fraction of Al atom is 7.35%, indicating high prediction accuracy of this model. During the process of ultrasonic bonding, Au8Al3 is the main intermetallic compound (IMC) at the Al-Au interface. With larger bonding forces, higher ultrasonic powers and longer bonding time, it is more difficult to remove the oxide particles from the Al-Au interface, which hinders the atomic diffusion. Therefore, the complicated stress state and the existence of oxide particles both promotes the formation of holes. The shear strength of Al-Au ultrasonic bonding increases with increasing bonding force, ultrasonic power and bonding time. However, combined with the presence of holes at especial parameters, the optimal ultrasonic bonding parameter is confirmed to be a bonding force of 23 gf, ultrasonic power of 75 mW and bonding time of 21 ms.
基金Project(51775480)supported by the National Natural Science Foundation of ChinaProjects(E2018203143,E2022203050)supported by the Natural Science Foundation of Hebei Province,China。
文摘In this work,the effect of ultrasonic vibration modes on the mechanical properties and relaxation of residual stress in 6061-T6 aluminum alloy was studied.A new ultrasonic vibration Johnson-Cook model was proposed,and the relaxation and distribution of residual stress under ultrasonic vibration were predicted and analyzed using the finite element method(FEM).The mechanical properties of 6061-T6 aluminum alloy under different ultrasonic vibration modes were analyzed through experiments involving notched specimen tensile testing and scanning electron microscopy(SEM)analysis.The findings indicate that ultrasonic vibration treatment during deformation,unloading,and load-holding,as well as treatment with its natural ultrasonic frequency,can effectively release residual stress;however,treatment with its natural frequency has the highest rate of release up to 65.4%.Ultrasonic vibration treatment during deformation better inhibits fracture under the same conditions.The FEM results are in good agreement with the experimental results,and it can be used as a valid tool for predicting residual stress release under ultrasonic vibration.
基金Project(2021YFC2801904) supported by the National Key R&D Program of ChinaProject(KY10100230067) supported by the Basic Product Innovation Research Project,China+3 种基金Projects(52271130,52305344) supported by the National Natural Science Foundation of ChinaProject(ZR2022QE073) supported by the Natural Science Foundation of Shandong Province,ChinaProject(AMGM2021F01) supported by the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai,ChinaProject(KY90200210015) supported by Leading Scientific Research Project of CNNC,China。
文摘In this work,ultrasonic energy field assistance combined with tempering treatment is proposed to improve the microstructure and mechanical properties of A517Q alloy steel fabricated by laser directed energy deposition(LDED).The effects of ultrasonic vibration(UV)and tempering treatment on microstructure evolution,microhardness distribution and mechanical properties of deposition layer were studied in detail.The microstructure of UV assisted LDED sample after tempering is mainly composed of tempered sorbite(TS).Due to the improvement of microstructure inhomogeneity and grains refinement,UV assisted LDED sample with tempering treatment obtains excellent mechanical properties.The ultimate tensile strength(UTS),yield strength(YS)and elongation after breaking(EL)reach 765 MPa,657 MPa and 19.5%,the increase ratios of UTS and YS are 14.5%and 33.8%while maintaining plasticity compared to original LDED sample,respectively.It is obvious that ultrasonic vibration combined with tempering is a potential and effective method to obtain uniform microstructure and excellent mechanical properties in metal laser directed energy deposition field.
文摘Ultrasonic extraction technique was used to extract perflurooctanoic acid (PFOA) and its salts from fluro-paints.The extract was quantified after filtration and concentration by gas chromatography-mass (GC-MS) method using perflurodecanoic acid methyl ester as an internal standard.The GC-MS conditions were: HP-Innowax capillary column; oven temperature,50℃(5 min)30℃/min240℃(5 min); splittless mode; injection volume,1μL; negative chemical ion source,reacting gas,CH4,20%; select ion scan mode (SIM);Line range was 1.0-1.0×105 μg/L; the correlation coefficient was 0.999; the low limit of detection (LOD) was 0.1 μg/L.The RSD was 4.24% and 3.58% respectively for low and high concentration of PFOA,and the average recovery was between 86%-111%.
文摘Ionic liquids ( ILs) based ultrasonic-assisted extract has been applied for the extraction of essential oil from Persicaria minor leaves. The effects of temperature,sonication time,and particle size of the plant material on the yield of essential oil were investigated. Among the different ILs employed,1-ethyl-3-methyli midazolium acetate was the most effective,providing a 9. 55% yield of the essential oil under optimum conditions( 70 ℃,25 min,IL ∶hexane ratio of 7 ∶10 ( v /v) ,particle size 60-80 mesh) . The performance of 1-ethyl-3-methylimidazolium acetate in the extraction was attributed to its lowviscosity and ability to disintegrate the structural matrix of the plant material. The ability of 1-ethyl-3-methylimidazolium acetate was also confirmed using the conductor like-screening model for realistic solvents. This research proves that ILs can be used to extract essential oils from lignocellulosic biomass.
基金Project(2010CB731700) supported by the National Basic Research Program of China
文摘With the experiment and finite element simulation, the influences of power ultrasonic on the solidification structure of 7050 aluminum alloy ingot in semi-continuous casting were researched, and the effects of casting speed on solidification structure in ultrasonic field were also analyzed. The experiment and simulation results show that the solidification structure of the ingot is homogeneously distributed, and its grain size is obviously refined at ultrasonic power of 240 W. The average grain sizes, which can be seen from the Leica microscope, are less than 100 μm. When the casting speed is 45-50 mm/min, the best grain refinement is obtained.
基金Projects(51375269,51675307) supported by the National Natural Science Foundation of China
文摘Ultrasonic vibration can reduce the forming force, decrease the friction in the metal forming process and improve the surface quality of the workpiece effectively. Tensile tests of AZ31 magnesium alloy were carried out. The stress–strain relationship, fracture modes of tensile specimens, microstructure and microhardness under different vibration conditions were analyzed, in order to study the effects of the ultrasonic vibration on microstructure and performance of AZ31 magnesium alloy under tensile deformation. The results showed that the different reductions of the true stress appeared under various ultrasonic vibration conditions, and the maximum decreasing range was 4.76%. The maximum microhardness difference among the 3 nodes selected along the specimen was HV 10.9. The fracture modes, plasticity and microstructure of AZ31 magnesium alloy also were affected by amplitude and action time of the ultrasonic vibration. The softening effect and the hardening effect occurred simultaneously when the ultrasonic vibration was applied. When the ultrasonic amplitude was 4.6 μm with short action time, the plastic deformation was dominated by twins and the softening effect was dominant. However, the twinning could be inhibited and the hardening effect became dominant in the case of high ultrasonic energy.
文摘In many fields of high-tech industry the ultra-t hi n wall parts are employed. In this paper the experiments were carried out to dis cuss the surface microstructure of the camera’s guided drawtube by applying ult rasonic vibration cutting device to the traditional lathe. The influence rule of the cutting condition on the surface roughness was put forward, which was drawn by comparing the ultrasonic cutting with the common cutting by use of the cemen ted carbide tool and the polycrystalline diamond (PCD) tool. The test results sh owed that the ultrasonic cutting performs better than the common cutting in the same condition. According to the test results analyzing, the surface characteriz ation is influenced clearly by the rigidity of the acoustic system and the machi ne tool, as well the setting height of the tool tip. Otherwise, the dense regula r low frequency vibration ripples will be scraped on the machined surface. When the tool tip is set higher than the rotating center of the work piece by three t imes of the amplitude of ultrasonic vibration, the vibration ripples behave alig ht; they turn light and shade alternatively when the tool tip is lower than the rotating center of the work piece by three times of the amplitude of ultrasonic vibration. According to the test result analyzing, the following conclusions are put forward: 1) The surface roughness in ultrasonic cutting is better than that in common cutting. Under a one third critical cutting velocity, the value of th e surface roughness in ultrasonic cutting rise slightly along with the cutting v elocity, while in common cutting it decreases contrast to the cutting velocity; the curves of the surface roughness in ultrasonic cutting and common cutting see m to be alike, both increase along with the feed rate and the cutting depth, but the value in ultrasonic cutting is smaller in the same condition.2) The influen ce of the coolant on the surface roughness cannot be ignored. The kerosene can b e employed to improve the surface roughness in ultrasonic machining.3) In ultras onic cutting process of aluminum alloy ultra-thin wall work piece, the PCD tool performs better than the cemented carbide tools.4) The vibration ripples result from the not enough rigidity of the acoustic system and the improper setting he ight of the tool tip. The departure of the tool tip from the rotating center of the work piece to some extent causes the vibration ripples on the machined surfa ce.
基金Projects(IRT0549) supported by Program for Changjiang Scholars and Innovative Research Team in University, China
文摘The experiment of ultrasonic treatment of roll casting aluminum strip on plane twin-roll cast-roller with double-heads ultrasonic tools was carried out, and the metallographic structure of the roll casting aluminum strip treated by ultrasonic was studied. The results show that ultrasonic treatment can refine the grain of the roll casting aluminum strips and make the structure of the strips more homogeneous. The effect is the best when the power of ultrasonic is 300 W and the incident angle of the guide rod is 45、. The mechanism of acoustic cavitations and acoustic flow on grain refinement was also discussed. The heat effect of intensity ultrasonic was studied. The present problems during ultrasonic roll casting process, such as the imperfect cooling system, the inaccurate calculation of ultrasonic energy, and the shape and position of the guide rod to be improved were pointed out.
基金Projects(51775480,51305385)supported by the National Natural Science Foundation of ChinaProject(E2018203143)supported by the Natural Science Foundation of Hebei Province,China
文摘The forming performance of sheet metals in the deep-drawing process with ultrasonic vibrations can be improved by the surface effect between the sheet metal and the die.A sheet metal friction test with ultrasonic vibrations is performed to explore the cause of the surface effect.The frictional characteristics are investigated,and the corresponding friction expressions are established based on the contact mechanics and the elastic–plastic contact model for rough surfaces.Friction is caused by the elastic–plastic deformation of contacting asperities under normal loads.The actual contacting region between two surfaces increases with normal loads,whereas the normal distance decreases.The normal distance between the contacting surfaces is changed,asperities generate a tangential deformation with ultrasonic vibrations,and the friction coefficient is eventually altered.Ultrasonic vibrations are applied on a 40Cr steel punch at the frequency of 20 kHz and the amplitude of 4.2μm.In the friction tests,the punch is perpendicular to the surface of the magnesium alloy AZ31B sheet metals and is sliding with a relative velocity of 1 mm/s.The test results show that the friction coefficient is decreased by approximately 40%and the theoretical values are in accordance with the test values;Ultrasonic vibrations can clearly reduce wear and improve the surface quality of parts.
基金Project(51375119) supported by the National Natural Science Foundation of China
文摘Pre-knowledge of machined surface roughness is the key to improve whole machining efficiency and meanwhile reduce the expenditure in machining optical glass components.In order to predict the surface roughness in ultrasonic vibration assisted grinding of brittle materials,the surface morphologies of grinding wheel were obtained firstly in the present work,the grinding wheel model was developed and the abrasive trajectories in ultrasonic vibration assisted grinding were also investigated,the theoretical model for surface roughness was developed based on the above analysis.The prediction model was developed by using Gaussian processing regression(GPR)due to the influence of brittle fracture on machined surface roughness.In order to validate both the proposed theoretical and GPR models,32sets of experiments of ultrasonic vibration assisted grinding of BK7optical glass were carried out.Experimental results show that the average relative errors of the theoretical model and GPR prediction model are13.11%and8.12%,respectively.The GPR prediction results can match well with the experimental results.
基金Projects(51275235, 50975135) supported by the National Natural Science Foundation of ChinaProject(U0934004) supported by the Natural Science Foundation of Guangdong Province, ChinaProject(2011CB707602) supported by the National Basic Research Program of China
文摘A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to realize the optimal design of the butterfly-shaped linear ultrasonic motor. First, the operation principle of the motor was introduced. Second, the finite element parameterized model of the stator of the motor was built using ANSYS parametric design language and some structure parameters of the stator were selected as design variables. Third, the sample points were selected in design variable space using latin hypercube Design. Through modal analysis and harmonic response analysis of the stator based on these sample points, the target responses were obtained. These sample points and response values were combined together to build a response surface model. Finally, the simplex method was used to find the optimal solution. The experimental results showed that many aspects of the design requirements of the butterfly-shaped linear ultrasonic motor have been fulfilled. The prototype motor fabricated based on the optimal design result exhibited considerably high dynamic performance, such as no-load speed of 873 ram/s, maximal thrust of 27.5 N, maximal efficiency of 43%, and thrust-weight ratio of 45.8.
基金Project(2016GK1004)supported by the Science and Technology Major Project of Hunan Province,China
文摘The effect of an ultrasonic field on the microstructure and mechanical properties of 7085 aluminum alloy during solidification was investigated by optical microscopy, Vickers hardness test, tensile test, scanning electron microscopy (SEM) with energy dispersive X-ray spectrometry, and electron probe micro-analysis (EPMA). The results showed that the grains of aluminum alloy were significantly refined and secondary phases were dispersed and distributed uniformly at the grain boundaries, due to ultrasonic treatment (UST). By EPMA, it was observed that the distribution of the main elements A1, Zn, Mg and Cu was more homogeneous in alloys with UST, than in alloys without UST. The mechanical properties of the aluminum alloy also significantly improved. As demonstrated by the SEM fractography of the fractured faces of several castings, fracture of the unrefined specimens occurred in a brittle manner, whereas the cracks of the refined specimens showed quasi-cleavage fracture.
文摘A new method is proposed to suppress chatter, in which the ultrasonic elliptical vibration is added on the cutting tool edge. It results in the fact that the rake face of tool is separated from the chip and the direction of the frictional force between the rake face and the chip is reversed in each cycle of elliptical vibration cutting. The experimental investigations show that the chatter can be suppressed effectively by adding ultrasonic elliptical vibration on the cutting tool edge. In order to make clear the reason of chatter suppression, the mechanism of chatter suppression is analyzed theoretically from the viewpoint of energy.