The melt filling difficulty in micro cavity is one of the main challenges for micro-injection molding (MIM). An approach employing ultrasound in MIM was proposed. The approach was extensively studied through experimen...The melt filling difficulty in micro cavity is one of the main challenges for micro-injection molding (MIM). An approach employing ultrasound in MIM was proposed. The approach was extensively studied through experiments with a home-made experimental ultrasonic plastification device. The results of the experiments show that polymer ultrasonic plastification speed increases with ultrasonic supply voltage and plastification pressure. When the ultrasonic supply voltage is 200 V and the plastification pressure is 2.0 MPa, the polymer ultrasonic plastification speed reaches the maximum value of 0.111 1 g/s. The results also indicate that the ultrasonic cavitation effect is the most significant effect of all the three effects during polymer ultrasonic plastification process.展开更多
The electric double layer with the transmission of particles was presented based on the principle of electrochemistry.In accordance with this theory,the cavitation catalysis removal mechanism of ultrasonic-pulse elect...The electric double layer with the transmission of particles was presented based on the principle of electrochemistry.In accordance with this theory,the cavitation catalysis removal mechanism of ultrasonic-pulse electrochemical compound machining(UPECM) based on particles was proposed.The removal mechanism was a particular focus and was thus validated by experiments.The principles and experiments of UPECM were introduced,and the removal model of the UPECM based on the principles of UPECM was established.Furthermore,the effects of the material removal rate for the main processing parameters,including the particles size,the ultrasonic vibration amplitude,the pulse voltage and the minimum machining gap between the tool and the workpiece,were also studied through UPECM.The results show that the particles promote ultrasonic-pulse electrochemical compound machining and thus act as the catalyzer of UPECM.The results also indicate that the processing speed,machining accuracy and surface quality can be improved under UPECM compound machining.展开更多
基金Project(107086)supported by the Key Program of Chinese Ministry of EducationProject(2009)supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘The melt filling difficulty in micro cavity is one of the main challenges for micro-injection molding (MIM). An approach employing ultrasound in MIM was proposed. The approach was extensively studied through experiments with a home-made experimental ultrasonic plastification device. The results of the experiments show that polymer ultrasonic plastification speed increases with ultrasonic supply voltage and plastification pressure. When the ultrasonic supply voltage is 200 V and the plastification pressure is 2.0 MPa, the polymer ultrasonic plastification speed reaches the maximum value of 0.111 1 g/s. The results also indicate that the ultrasonic cavitation effect is the most significant effect of all the three effects during polymer ultrasonic plastification process.
基金Project(51275116)supported by the National Natural Science Foundation of ChinaProject(2012ZE77010)supported by the Aero Science Foundation of ChinaProject(LBH-Q11090)supported by the Postdoctoral Science Research Development Foundation of Heilongjiang Province,China
文摘The electric double layer with the transmission of particles was presented based on the principle of electrochemistry.In accordance with this theory,the cavitation catalysis removal mechanism of ultrasonic-pulse electrochemical compound machining(UPECM) based on particles was proposed.The removal mechanism was a particular focus and was thus validated by experiments.The principles and experiments of UPECM were introduced,and the removal model of the UPECM based on the principles of UPECM was established.Furthermore,the effects of the material removal rate for the main processing parameters,including the particles size,the ultrasonic vibration amplitude,the pulse voltage and the minimum machining gap between the tool and the workpiece,were also studied through UPECM.The results show that the particles promote ultrasonic-pulse electrochemical compound machining and thus act as the catalyzer of UPECM.The results also indicate that the processing speed,machining accuracy and surface quality can be improved under UPECM compound machining.