期刊文献+
共找到165篇文章
< 1 2 9 >
每页显示 20 50 100
Power forecasting method of ultra-short-term wind power cluster based on the convergence cross mapping algorithm
1
作者 Yuzhe Yang Weiye Song +5 位作者 Shuang Han Jie Yan Han Wang Qiangsheng Dai Xuesong Huo Yongqian Liu 《Global Energy Interconnection》 2025年第1期28-42,共15页
The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward... The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward-looking information of key wind farms in a cluster under different weather conditions is an effective method to improve the accuracy of ultrashort-term cluster power forecasting.To this end,this paper proposes a refined modeling method for ultrashort-term wind power cluster forecasting based on a convergent cross-mapping algorithm.From the perspective of causality,key meteorological forecasting factors under different cluster power fluctuation processes were screened,and refined training modeling was performed for different fluctuation processes.First,a wind process description index system and classification model at the wind power cluster level are established to realize the classification of typical fluctuation processes.A meteorological-cluster power causal relationship evaluation model based on the convergent cross-mapping algorithm is pro-posed to screen meteorological forecasting factors under multiple types of typical fluctuation processes.Finally,a refined modeling meth-od for a variety of different typical fluctuation processes is proposed,and the strong causal meteorological forecasting factors of each scenario are used as inputs to realize high-precision modeling and forecasting of ultra-short-term wind cluster power.An example anal-ysis shows that the short-term wind power cluster power forecasting accuracy of the proposed method can reach 88.55%,which is 1.57-7.32%higher than that of traditional methods. 展开更多
关键词 ultra-short-term wind power forecasting wind power cluster Causality analysis Convergence cross mapping algorithm
在线阅读 下载PDF
Forecasting method of monthly wind power generation based on climate model and long short-term memory neural network 被引量:5
2
作者 Rui Yin Dengxuan Li +1 位作者 Yifeng Wang Weidong Chen 《Global Energy Interconnection》 CAS 2020年第6期571-576,共6页
Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wi... Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wind power gen eration forecast!ng method based on a climate model and long short-term memory(LSTM)n eural n etwork.A non linear mappi ng model is established between the meteorological elements and wind power monthly utilization hours.After considering the meteorological data(as predicted for the future)and new installed capacity planning,the monthly wind power gen eration forecast results are output.A case study shows the effectiveness of the prediction method. 展开更多
关键词 wind power Monthly generation forecast Climate model LSTM neural network
在线阅读 下载PDF
A comprehensive review for wind,solar,and electrical load forecasting methods 被引量:12
3
作者 Han Wang Ning Zhang +3 位作者 Ershun Du Jie Yan Shuang Han Yongqian Liu 《Global Energy Interconnection》 EI CAS CSCD 2022年第1期9-30,共22页
Wind power,solar power,and electrical load forecasting are essential works to ensure the safe and stable operation of the electric power system.With the increasing permeability of new energy and the rising demand resp... Wind power,solar power,and electrical load forecasting are essential works to ensure the safe and stable operation of the electric power system.With the increasing permeability of new energy and the rising demand response load,the uncertainty on the production and load sides are both increased,bringing new challenges to the forecasting work and putting forward higher requirements to the forecasting accuracy.Most review/survey papers focus on one specific forecasting object(wind,solar,or load),a few involve the above two or three objects,but the forecasting objects are surveyed separately.Some papers predict at least two kinds of objects simultaneously to cope with the increasing uncertainty at both production and load sides.However,there is no corresponding review at present.Hence,our study provides a comprehensive review of wind,solar,and electrical load forecasting methods.Furthermore,the survey of Numerical Weather Prediction wind speed/irradiance correction methods is also included in this manuscript.Challenges and future research directions are discussed at last. 展开更多
关键词 wind power Solar power Electrical load forecasting Numerical Weather Prediction CORRELATION
在线阅读 下载PDF
Quantitative method for evaluating detailed volatility of wind power at multiple temporal-spatial scales 被引量:6
4
作者 Yongqian Liu Han Wang +3 位作者 Shuang Han Jie Yan Li Li Zixin Chen 《Global Energy Interconnection》 2019年第4期318-327,共10页
With the increasing proportion of wind power integration, the volatility of wind power brings huge challenges to the safe and stable operation of the electric power system. At present, the indexes commonly used to eva... With the increasing proportion of wind power integration, the volatility of wind power brings huge challenges to the safe and stable operation of the electric power system. At present, the indexes commonly used to evaluate the volatility of wind power only consider its overall characteristics, such as the standard deviation of wind power, the average of power variables, etc., while ignoring the detailed volatility of wind power, that is, the features of the frequency distribution of power variables. However, how to accurately describe the detailed volatility of wind power is the key foundation to reduce its adverse influences. To address this, a quantitative method for evaluating the detailed volatility of wind power at multiple temporal-spatial scales is proposed. First, the volatility indexes which can evaluate the detailed fluctuation characteristics of wind power are presented, including the upper confidence limit, lower confidence limit and confidence interval of power variables under the certain confidence level. Then, the actual wind power data from a location in northern China is used to illustrate the application of the proposed indexes at multiple temporal(year–season–month–day) and spatial scales(wind turbine–wind turbines–wind farm–wind farms) using the calculation time windows of 10 min, 30 min, 1 h, and 4 h. Finally, the relationships between wind power forecasting accuracy and its corresponding detailed volatility are analyzed to further verify the effectiveness of the proposed indexes. The results show that the proposed volatility indexes can effectively characterize the detailed fluctuations of wind power at multiple temporal-spatial scales. It is anticipated that the results of this study will serve as an important reference for the reserve capacity planning and optimization dispatch in the electric power system which with a high proportion of renewable energy. 展开更多
关键词 wind power Detailed VOLATILITY Frequency distribution MULTIPLE temporal-spatial scales TYPICAL DAYS forecasting accuracy
在线阅读 下载PDF
基于波动信息优选及切换输入机制的短期延长期风电集群功率预测
5
作者 杨茂 鞠超毅 +1 位作者 张薇 苏欣 《太阳能学报》 北大核心 2025年第3期546-558,共13页
在风电功率预测领域,现有短期时间尺度研究和应用的预见期最长为7d,缺乏对8~15d短期延长期时间尺度下的预测研究。针对上述问题,提出基于天气过程挖掘和切换机制的8~15d短期延长期预测框架,着重对未来出力水平进行预测,将历史选择分为... 在风电功率预测领域,现有短期时间尺度研究和应用的预见期最长为7d,缺乏对8~15d短期延长期时间尺度下的预测研究。针对上述问题,提出基于天气过程挖掘和切换机制的8~15d短期延长期预测框架,着重对未来出力水平进行预测,将历史选择分为波动性优先历史选择和稳定性优先历史选择,在波动性优先历史选择效果较差时,利用稳定性优先历史选择进行误差平衡。所提框架在甘肃省某风电集群进行验证,结果表明,所提框架均方根误差在8~15d所有时间尺度下平均降低0.84%~1.45%,在未来数值天气预报(NWP)可用性匮乏的情况下实现了8~15d预测,有效提高短期延长期预测的可靠性。 展开更多
关键词 风电功率 预测 切换机制 优选 短期 短期延长期
在线阅读 下载PDF
多尺度特征提取的Transformer短期风电功率预测
6
作者 徐武 范鑫豪 +1 位作者 沈智方 刘洋 《太阳能学报》 北大核心 2025年第2期640-648,共9页
针对短期风电功率预测特征提取尺度单一问题,设计一种基于多尺度特征提取的Transformer短期风电功率预测模型(MTPNet)。首先,在Transformer构架的基础上,利用维数不变嵌入,设计多尺度特征提取网络挖掘风电功率序列本身时序特征,保证了... 针对短期风电功率预测特征提取尺度单一问题,设计一种基于多尺度特征提取的Transformer短期风电功率预测模型(MTPNet)。首先,在Transformer构架的基础上,利用维数不变嵌入,设计多尺度特征提取网络挖掘风电功率序列本身时序特征,保证了特征提取时维数不被破坏;其次,利用融合自注意力机制的长短期记忆网络挖掘气象条件与功率之间的全局依赖关系;最后,融合风电功率序列本身时序特征和气象条件依赖关系,实现短期风电功率预测。实例仿真结果表明,MTPNet模型预测精度得到提升;消融实验证明了模型各模块的可靠性和有效性,具有一定的实用价值。 展开更多
关键词 风电功率预测 TRANSFORMER 注意力机制 特征提取 长短期记忆网络 维数不变嵌入层
在线阅读 下载PDF
基于帝王蝶算法的CNN-GRU-LightGBM模型短期风电功率预测
7
作者 向阳 刘亚娟 +2 位作者 孙志伟 张效宁 卢建谋 《太阳能学报》 北大核心 2025年第1期105-114,共10页
风电集群大规模并网和跨季节使用产生的不确定性对风电功率预测播报的准确度提出更高的要求。为提高风电功率预测的准确度,提出一种基于帝王蝶优化算法(MBO)的卷积神经网络(CNN)-门控循环单元(GRU)-梯度提升学习(LightGBM)复合风电功率... 风电集群大规模并网和跨季节使用产生的不确定性对风电功率预测播报的准确度提出更高的要求。为提高风电功率预测的准确度,提出一种基于帝王蝶优化算法(MBO)的卷积神经网络(CNN)-门控循环单元(GRU)-梯度提升学习(LightGBM)复合风电功率预测模型。首先,分别建立CNN-GRU和LightGBM的风电功率预测模型,利用方差倒数法将两个模型加权组合为CNN-GRU-LightGBM复合模型;为优化模型中的连续参数,使用MBO对模型进行超参数优化。最后,选取珠海某海上风电场的短期风电功率数据对所提方法与已有预测方法进行对比,实验结果表明,该模型结合了CNN-GRU、LightGBM等模型的优点,预测误差更小,预测精度更高,拥有更强的季节普适性。 展开更多
关键词 风电功率预测 卷积神经网络 门控循环单元 梯度提升学习 帝王蝶算法
在线阅读 下载PDF
基于CEEMDAN⁃TCN的短期风电功率预测研究
8
作者 李敖 冉华军 +2 位作者 李林蔚 王新权 高越 《现代电子技术》 北大核心 2025年第2期97-102,共6页
风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分... 风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分解和时间卷积网络的短期风电功率预测方法。首先利用自适应噪声完备集合经验模态分解对初始风电功率数据进行分解,得到多个相对稳定的子数据序列;然后将其分别作为时间卷积网络的输入,利用时间卷积网络模型进行特征提取和功率预测;最后将所有预测值进行汇总,得到最终的功率预测值。使用宁夏某地区真实风电功率数据进行验证,并与传统预测模型比较,结果表明所提方法具有较高的预测精度,可为风电功率短期预测等相关工作提供相关参考。 展开更多
关键词 短期风电功率预测 自适应噪声的完备集合经验模态分解(CEEMDAN) 时间卷积网络(TCN) 特征提取 预测精度 时间序列分析
在线阅读 下载PDF
基于多目标优化和深度学习的短期风功率组合预测
9
作者 胡甲秋 卓毅鑫 +3 位作者 唐健 蒙文川 戚焕兴 刘鲁宁 《太阳能学报》 北大核心 2025年第2期615-623,共9页
针对风功率时间序列的非线性和波动性等特征,提出一种基于多目标优化和深度学习的风功率组合预测的方法。该方法基于完全自适应噪声集合经验模态分解,得到原始风功率序列的子序列集合,分别使用极限学习机、长短期记忆和时间卷积网络建... 针对风功率时间序列的非线性和波动性等特征,提出一种基于多目标优化和深度学习的风功率组合预测的方法。该方法基于完全自适应噪声集合经验模态分解,得到原始风功率序列的子序列集合,分别使用极限学习机、长短期记忆和时间卷积网络建立子序列预测模型并重构。基于此建立组合预测模型,应用多目标哈里斯鹰优化算法和深度确定性梯度策略求解最优组合权值。使用广西某风电场的实测资料进行实验,结果表明:所提出的组合预测模型在4组数据集中均表现最优,与集合平均相比均方根误差分别降低了12.93%、13.91%、12.38%和9.71%,预测精度得到有效提升。 展开更多
关键词 风功率 预测 神经网络 组合预测 多目标优化 深度学习
在线阅读 下载PDF
灵敏度-层HMM功率预测的风机运行不确定性风险评估方法
10
作者 师洪涛 李艺萱 +2 位作者 丁茂生 高峰 李希彬 《中国测试》 北大核心 2025年第3期37-45,共9页
风电机组的运行风险评估对大规模风电并网的安全与稳定具有重要的意义,为解决传统风电机组运行风险评估中残差评估风险等级划分准确度低的问题,提出基于灵敏度-层隐马尔可夫链(hidden Markov model,HMM)功率预测的风电不确定性风险评估... 风电机组的运行风险评估对大规模风电并网的安全与稳定具有重要的意义,为解决传统风电机组运行风险评估中残差评估风险等级划分准确度低的问题,提出基于灵敏度-层隐马尔可夫链(hidden Markov model,HMM)功率预测的风电不确定性风险评估方法。首先提出新的量化风险度的模型,在残差序列中考虑风险发生的概率并应用HMM聚类考虑残差序列的时间特征;进一步地,提出灵敏度-层HMM预测模型,其采用灵敏度提取风电功率在风速区间内的变化趋势,使HMM预测状态的选取更为合理,进而提高预测精度。最后,实际算例表明,相较于传统的风险度评估方法,采用该文提出的风电机组的风险评估方法,风电功率预测误差RMSE降低至10.47%,风险评估模型在考虑不确定性与时序性的前提下,聚类的错误率降低为5.5%。 展开更多
关键词 风电功率预测 灵敏度分析 层隐马尔可夫链 风险度评估
在线阅读 下载PDF
极端天气对风电开发全过程的影响及应对策略
11
作者 孟丹 陈正洪 +4 位作者 许杨 曾鹏 王明 崔杨 许沛华 《南方能源建设》 2025年第2期1-14,共14页
[目的]碳中和、碳达峰系列政策的实施,推动了风电这一清洁能源的快速发展。近年来,极端天气气候事件频发,随着风电大规模投产并网,极端天气导致的风电场气象灾害问题愈加凸显。极端天气不仅给风电开发带来了严峻挑战,还可能对电网稳定... [目的]碳中和、碳达峰系列政策的实施,推动了风电这一清洁能源的快速发展。近年来,极端天气气候事件频发,随着风电大规模投产并网,极端天气导致的风电场气象灾害问题愈加凸显。极端天气不仅给风电开发带来了严峻挑战,还可能对电网稳定性和供电可靠性造成影响,因此,需要深入了解极端天气对风电开发的影响机理,采取有效预防和应对措施,确保风电行业健康安全发展。[方法]通过梳理近期发表的风电气象灾害相关文献,文章将影响风电开发的高影响天气分成了极端天气和不良天气2大类,归纳总结了台风、大风、雷电、暴雨、沙尘暴、低温冰冻、高温等极端天气以及小静风、盐雾、海雾等不良天气在风电场规划设计、施工建设、生产运营阶段对风电场规划立项、资源评估、勘察设计、装机建设、基建设施、风电出力和风电功率预测等方面的影响。[结果]规划设计阶段,需识别并评估极端天气风险,进行科学的宏观和微观选址选型;施工建设阶段,暴雨、低温冰冻等影响运输延误工期,大风、暴雨等影响吊装引发作业风险,海雾、雷电等影响海上风电施工安全;生产运营阶段,极端天气易导致风电场大规模停机和出力损失,甚至可能威胁电网安全稳定运行。除了一定强度的热带气旋外,其他高影响天气均不利于风电出力。频发的极端天气过程导致风电功率预报准确率降低。[结论]最后,提出了应对高影响天气的措施,包括加强应急管理和极端天气的监测预警,考虑极端天气对风电功率预测的影响,加强储能系统建设等。 展开更多
关键词 风电场 极端天气 风电出力 功率预报 影响
在线阅读 下载PDF
基于ARIMA的风电发电量预测
12
作者 刘吉雄 邹瑞 许思为 《现代信息科技》 2025年第4期157-161,166,共6页
风能作为一种可再生清洁能源,得到了高速发展。高精度的风力发电量预测可为电力调度以及平抑并网波动提供重要依据。文章基于ARIMA模型,分别进行超短期、短期和中长期风力发电量预测,探讨其可行性和有效性。使用某风电场2019年1月1日至2... 风能作为一种可再生清洁能源,得到了高速发展。高精度的风力发电量预测可为电力调度以及平抑并网波动提供重要依据。文章基于ARIMA模型,分别进行超短期、短期和中长期风力发电量预测,探讨其可行性和有效性。使用某风电场2019年1月1日至2020年12月31日的风电功率数据进行建模,并开展不同时间长度的预测。在此基础上,考虑数据的周期性特征以及实际气候因素对发电功率的影响,优化模型的预测效果。实验结果表明,考虑数据周期性与外生变量的影响能够显著提升对实际功率的预测精度。超短期、短期和中长期预测的均方根误差分别为7.16、12.63和17.98。 展开更多
关键词 风力发电 发电量预测 ARIMA 皮尔逊系数
在线阅读 下载PDF
基于IWOA-SA-Elman神经网络的短期风电功率预测 被引量:4
13
作者 刘吉成 朱玺瑞 于晶 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期143-150,共8页
由于风力发电的随机性和不确定性使其短期功率的预测工作十分困难,而神经网络模型依靠其强大的自学习能力在风电功率预测领域有着广泛的应用。但神经网络预测精度受初始权重影响较大,且易出现过拟合的问题。为此构建一种基于改进鲸鱼算... 由于风力发电的随机性和不确定性使其短期功率的预测工作十分困难,而神经网络模型依靠其强大的自学习能力在风电功率预测领域有着广泛的应用。但神经网络预测精度受初始权重影响较大,且易出现过拟合的问题。为此构建一种基于改进鲸鱼算法和模拟退火组合优化的Elman神经网络短期风电功率预测模型,模型首先利用改进鲸鱼算法结合模拟退火策略获得高质量神经网络初始权值,接着引入正则化损失函数防止其过拟合,最后以西班牙瓦伦西亚某风电场陆上短期风电功率为研究对象,将该算法与BP、LSTM、Elman、WOA-Elman、IWOA-Elman 5种神经网络算法进行算法性能测试对比,结果表明IWOA-SA-Elman神经网络模型预测误差最小,验证了该算法的合理性和有效性。 展开更多
关键词 风电 ELMAN神经网络 预测 模拟退火 鲸鱼优化算法
在线阅读 下载PDF
计及误差信息的自适应超短期风速预测模型 被引量:1
14
作者 张金良 刘子毅 孙安黎 《太阳能学报》 EI CAS CSCD 北大核心 2024年第3期18-28,共11页
为提升超短期风速预测精度,提出一种计及误差信息的自适应混合预测模型。应用自适应噪声的完备集合经验模态分解模型与鲸鱼优化的变分模态分解模型分别对风速样本数据与预测误差进行分解,同时计算各子序列的模糊熵以判断序列复杂程度。... 为提升超短期风速预测精度,提出一种计及误差信息的自适应混合预测模型。应用自适应噪声的完备集合经验模态分解模型与鲸鱼优化的变分模态分解模型分别对风速样本数据与预测误差进行分解,同时计算各子序列的模糊熵以判断序列复杂程度。在此基础上,应用鲸鱼优化的长短期网络预测复杂程度较高的序列,差分自回归移动平均模型预测复杂程度较低的序列。最后,将初始风速预测结果和风速误差预测值相加得到基于误差修正的超短期风速预测值。结果表明,修正预测误差与考虑分解策略可有效提升点预测的性能,与基准模型相比,所提模型在多场景下均具备优良的预测精度。 展开更多
关键词 风电 风速 预测 误差修正 变分模态分解 长短期记忆网络 鲸鱼优化
在线阅读 下载PDF
考虑局部条件特征的风电功率短期预测
15
作者 张家安 黄晨旭 李志军 《太阳能学报》 CSCD 北大核心 2024年第12期220-227,共8页
提出一种考虑局部条件特征的风电功率短期预测方法。首先,基于斯皮尔曼相关系数对局部条件因素与风力机功率的相关性进行分析,确定风速、风向和对风角度等为影响风电场功率短期预测准确度的关键因素;然后,基于广义极值分布分别对关键因... 提出一种考虑局部条件特征的风电功率短期预测方法。首先,基于斯皮尔曼相关系数对局部条件因素与风力机功率的相关性进行分析,确定风速、风向和对风角度等为影响风电场功率短期预测准确度的关键因素;然后,基于广义极值分布分别对关键因素的分布参数进行估计,并构建平均波动系数指标描述各风力机间的参数差异性,基于K-means++算法对风力机进行聚类;最后,采用主成分分析(PCA)方法提取机群内各风力机功率的关键特征,并基于双向循环神经网络(BiGRU)对机群功率进行预测,进而累加获取风电场的预测功率。以华北某风电场运行数据为算例,验证该方法的有效性。 展开更多
关键词 风电功率 预测 聚类分析 神经网络 特征提取
在线阅读 下载PDF
基于自适应优化AP聚类与BP加权网络的多区域复合短期风电功率预测
16
作者 赵飞 张天祥 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期634-640,共7页
精准的风电集群区域功率预测对电源侧的竞价上网具有重要意义。由于同一地区多个风电场受气候影响波动程度相近,可看作具有时空相关性的风电场群,并以此进行集群的合理划分。为此,提出一种基于自适应优化近邻传播(AP)聚类与反向传播(BP... 精准的风电集群区域功率预测对电源侧的竞价上网具有重要意义。由于同一地区多个风电场受气候影响波动程度相近,可看作具有时空相关性的风电场群,并以此进行集群的合理划分。为此,提出一种基于自适应优化近邻传播(AP)聚类与反向传播(BP)加权神经网络的多区域复合短期风电功率预测模型。首先,通过粒子群优化算法(PSO)优化AP聚类方法对风电场群的历史数据进行集群的聚类与划分;然后,根据得到的最优聚类结果构建风电场群子区域样本训练集;最后,利用基于相关系数权重的BP神经网络对各子区域进行功率预测。算例结果表明:所提方法在24 h日前预测相较传统叠加法与单一BP神经网络可提高1.35%和2.62%的精度,可表明该模型具有优越的预测性能。 展开更多
关键词 风电场 聚类分析 粒子群算法 反向传播 相关性理论 功率预测
在线阅读 下载PDF
基于CNN–LSTM的风电场发电功率迁移预测方法 被引量:8
17
作者 唐清苇 向月 +3 位作者 代佳琨 李子豪 孙炜 刘俊勇 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第2期91-99,共9页
随着能源消耗的持续增长和全球气候问题的日趋严峻,以风能为代表的清洁能源装机容量正在稳步提升。为更好地消纳风电,需要准确的风电场发电功率预测为配套设施建设和未来规划制定提供有效依据。针对在缺少风电历史运行数据时预测精度较... 随着能源消耗的持续增长和全球气候问题的日趋严峻,以风能为代表的清洁能源装机容量正在稳步提升。为更好地消纳风电,需要准确的风电场发电功率预测为配套设施建设和未来规划制定提供有效依据。针对在缺少风电历史运行数据时预测精度较低的问题,提出一种基于卷积神经网络–长短期记忆神经网络(CNN–LSTM)的规划阶段风电场发电功率预测模型。首先,基于参考电站历史数据提取风速–风电功率实测数据点,采用3次样条插值进行风电功率曲线建模。然后,采用K–means聚类算法,根据风速–风电功率的特性关系划分参考风电场的区域类别。综合考虑风电功率与多维气象因素的特征关系和功率的时序特性,构建CNN–LSTM预测模型,提出基于功率曲线的预测结果修正方法。最后,基于某地风电场实际数据进行算例分析,并与使用标准功率曲线和未进行修正时的预测结果进行对比分析。结果表明:基于风速–风电功率特性的风电场聚类可以实现参考风电场的优化识别;所提模型预测结果优于传统标准功率曲线预测方法,基于功率曲线的修正方法进一步提升了预测效果。基于深度学习算法的规划阶段风电场发电功率迁移预测模型综合考虑了风力发电特性和多维环境因素,其有效性得到了验证,可以为提高规划阶段风电场发电功率的预测精度提供新思路。 展开更多
关键词 风电预测 长短期记忆神经网络 卷积神经网络 功率曲线 风电场规划
在线阅读 下载PDF
基于FSN-MCCN-SA-BiLSTM的短期风速预测 被引量:1
18
作者 张越 臧海祥 +3 位作者 韩海腾 李叶阳 卫志农 孙国强 《太阳能学报》 EI CAS CSCD 北大核心 2024年第8期529-536,共8页
为了提升短期风速预测的准确性,提出一种新型的短期风速预测方法。该方法以历史风速和气象数据作为输入,首先利用特征选择网络量化输入序列中每个时间步不同特征的重要程度,其次采用多尺度因果卷积网络捕捉其局部时序特征,然后引入自注... 为了提升短期风速预测的准确性,提出一种新型的短期风速预测方法。该方法以历史风速和气象数据作为输入,首先利用特征选择网络量化输入序列中每个时间步不同特征的重要程度,其次采用多尺度因果卷积网络捕捉其局部时序特征,然后引入自注意力融合不同卷积层的特征,得到能反映风速多尺度变化特性的高维特征序列,最后利用双向长短期记忆网络提取高维特征序列的长期时序特征并得到风速预测结果。实验结果表明,该方法能考虑不同输入特征对于风速的动态影响,同时充分提取风速序列的局部与长期时序特征,其进行提前1 h的风速预测时,所得归一化均方根误差与平均绝对误差分别为11.92%和8.11%,相关系数和决定系数分别为0.9735和0.9477,可有效提高短期风速预测的准确性。 展开更多
关键词 风力发电 风速 预测 特征选择 深度学习 自注意力
在线阅读 下载PDF
基于AVMD-CNN-GRU-Attention的超短期风功率预测研究 被引量:3
19
作者 任东方 马家庆 +1 位作者 何志琴 吴钦木 《太阳能学报》 EI CAS CSCD 北大核心 2024年第6期436-443,共8页
为提高超短期风功率的预测精度,提出一种改进的基于变分模态分解的卷积神经网络(AVMD-CNN)、门控循环单元(GRU)和注意力机制(Attention)的超短期风功率预测模型。首先利用改进的VMD将风功率序列分解为K个子模态;然后将各子模态利用样本... 为提高超短期风功率的预测精度,提出一种改进的基于变分模态分解的卷积神经网络(AVMD-CNN)、门控循环单元(GRU)和注意力机制(Attention)的超短期风功率预测模型。首先利用改进的VMD将风功率序列分解为K个子模态;然后将各子模态利用样本熵(SE)和中心频率进行分类,根据分类结果对各子模态分别给定归一化方式,并按SE值分别输入到GRU-Attention和CNN-GRU-Attention模型中进行训练和预测;最后将各子模态预测结果叠加得到最终结果,从而完成超短期风功率预测。以决定系数(R^(2))、平均绝对误差(MAE)、均方根误差(RMSE)以及平均绝对百分比误差(MAPE)为精度评估指标,实际算例表明,所提出模型的R^(2)较文中其他方法平均提高12.06%,MAE、RMSE以及MAPE分别平均降低59.36%、62.49%和48.34%,具有较高的预测精度。 展开更多
关键词 风功率 预测 变分模态分解 卷积神经网络 注意力机制 样本熵
在线阅读 下载PDF
引入注意力机制的LSTM-FCN海上风电功率预测 被引量:4
20
作者 张昊立 张菁 +2 位作者 倪建辉 陈龙 高典 《太阳能学报》 EI CAS CSCD 北大核心 2024年第6期444-450,共7页
提出一种注意力机制与LSTM-FCN网络结合的海上风电预测模型,在数据中引入风切变物理量来更准确地预测海上风电发电功率。选用公共数据集网站Zenodo内某海上风电场数据中2组风力机数据进行分析和预测验证。对数据集进行标准化预处理后,用... 提出一种注意力机制与LSTM-FCN网络结合的海上风电预测模型,在数据中引入风切变物理量来更准确地预测海上风电发电功率。选用公共数据集网站Zenodo内某海上风电场数据中2组风力机数据进行分析和预测验证。对数据集进行标准化预处理后,用AMLSTM-FCN网络和CNN网络、LSTM网络、LSTM-FCN网络进行对比实验,其中AMLSTM-FCN网络在2份风力机数据预测中,RMSE、MAPE、MAE分别为:5号风力机:6.9434、14.01%、48.6636,6号风力机:2.6933、7.12%、17.2536,在相同时段上采用去除风切变的数据训练网络,得到的预测结果从4个指标中看出预测准确度下降。实验表明AMLSTM-FCN网络在海上风电功率预测中有更高的预测精度,以及风切变也对海上风电功率有显著影响。 展开更多
关键词 海上风电 功率预测 注意力机制 人工神经网络 风切变
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部