期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
基于人脸矫正恢复的课堂学业情绪识别算法
1
作者 刘帆 房建东 《计算机应用与软件》 北大核心 2025年第7期182-191,218,共11页
针对课堂教学场景数据存在着学生遮挡严重、姿态极端,及传统面部情感识别算法不适用课堂场景,且缺乏公开学业情绪数据的问题,构建学生课堂面部检测数据集和课堂情绪数据集,提出基于人脸矫正恢复的课堂学业情绪识别算法。基于构建实时课... 针对课堂教学场景数据存在着学生遮挡严重、姿态极端,及传统面部情感识别算法不适用课堂场景,且缺乏公开学业情绪数据的问题,构建学生课堂面部检测数据集和课堂情绪数据集,提出基于人脸矫正恢复的课堂学业情绪识别算法。基于构建实时课堂面部检测模型,获取学生面部信息;利用矫正恢复算法修复受损面容;设计双路学业情绪识别网络识别学业情绪。该方法相较传统方法大幅提升了学业情绪识别精度,强化了真实课堂中极端姿态和遮挡面容的情绪识别能力,系统模块集成后于课堂有限条件下实现了视频稀疏采样的实时识别。 展开更多
关键词 面部检测识别 人脸矫正恢复 情绪识别 迁移学习 稀疏采样
在线阅读 下载PDF
面向变工况机械设备智能故障诊断的可解释三特征提取器迁移网络 被引量:1
2
作者 陈凯 丁传仓 +2 位作者 王报祥 黄伟国 朱忠奎 《振动工程学报》 北大核心 2025年第6期1232-1241,共10页
针对深度神经网络可解释性低及目前可解释网络无法实现跨域诊断的问题,提出了一种可解释三特征提取器迁移网络(interpretable triple feature extractor transfer network,ITFETN)。针对可解释性问题,建立了多层稀疏编码模型,推导了多... 针对深度神经网络可解释性低及目前可解释网络无法实现跨域诊断的问题,提出了一种可解释三特征提取器迁移网络(interpretable triple feature extractor transfer network,ITFETN)。针对可解释性问题,建立了多层稀疏编码模型,推导了多层稀疏编码模型的迭代求解算法,通过展开快速迭代软阈值算法,得到稀疏编码模型求解算法的等效网络形式,并将其作为特征提取器,形成具有可解释性的算法结构等效网络;针对跨域迁移诊断问题,构建了三特征提取器策略用于提取源域、目标域的共享特征以及各自的私有特征,并基于特征对抗思想设计了迁移诊断任务的损失函数用于ITFETN的有效训练,有效提取出源域和目标域中距离最小化的共享特征进行跨域诊断,实现可解释迁移诊断任务。试验结果表明,ITFETN在两个实例分析中的平均准确率和鲁棒性相较于对比方法均有所提升,能够有效实现具有可解释性的跨域诊断。 展开更多
关键词 智能故障诊断 可解释网络 迁移学习 稀疏编码 三特征提取器
在线阅读 下载PDF
一种新的用于跨领域推荐的迁移学习模型 被引量:26
3
作者 王俊 李石君 +2 位作者 杨莎 金红 余伟 《计算机学报》 EI CSCD 北大核心 2017年第10期2367-2380,共14页
协同过滤是一种简单常用的推荐方法,但是当目标数据非常稀疏时,其性能会严重退化,借助与目标数据跨域关联的辅助数据进行跨领域推荐是解决此问题的一种有效途径.已有的跨领域推荐模型大多假设不同领域完全共享一个评分模式,忽略了领域... 协同过滤是一种简单常用的推荐方法,但是当目标数据非常稀疏时,其性能会严重退化,借助与目标数据跨域关联的辅助数据进行跨领域推荐是解决此问题的一种有效途径.已有的跨领域推荐模型大多假设不同领域完全共享一个评分模式,忽略了领域特有评分模式,可能导致推荐性能退化.此外,许多模型基于单一桥梁迁移跨领域信息,正迁移不足.特别是在考虑领域特有被评分模式的前提下,据作者所知目前还没有模型利用项目的共享被评分模式进行跨领域推荐.因此,该文提出一种新的三元桥迁移学习模型,用于跨领域推荐.首先通过评分矩阵的集合分解提取用户的潜在因子和共享评分模式,以及项目的潜在因子和共享被评分模式,在此过程中考虑了领域特有模式,并对潜在因子施加相似性约束;然后利用潜在因子中的聚类信息构造邻接图;最后通过用户端和项目端的基于共享模式、潜在因子和邻接图的三元桥迁移学习联合预测缺失评分.在三个公开的真实数据集上进行的大量实验表明,该模型的推荐精度优于一些目前最先进的推荐模型. 展开更多
关键词 迁移学习 推荐 协同过滤 跨领域 稀疏 矩阵分解
在线阅读 下载PDF
面向帕金森病语音诊断的非监督两步式卷积稀疏迁移学习算法 被引量:7
4
作者 张小恒 张馨月 +2 位作者 李勇明 王品 刘玉川 《电子学报》 EI CAS CSCD 北大核心 2022年第1期177-184,共8页
帕金森病(Parkinson’s Disease,PD)语音诊断存在小样本问题,如果借助相关语音数据集进行迁移学习,容易加重训练集和测试集之间的分布差异,影响分类准确率.为了解决上述矛盾问题,本文提出了两步式稀疏迁移学习算法.该算法分为两大步:第... 帕金森病(Parkinson’s Disease,PD)语音诊断存在小样本问题,如果借助相关语音数据集进行迁移学习,容易加重训练集和测试集之间的分布差异,影响分类准确率.为了解决上述矛盾问题,本文提出了两步式稀疏迁移学习算法.该算法分为两大步:第一步算法为语音段特征同时优选的快速卷积稀疏编码算法,构造卷积稀疏编码算子用于快速学习公共语音数据集的结构信息,然后将其迁移到PD语音目标集以弥补后者样本信息的不足,接着再同时对语音段和特征进行同时优选以获得更有价值的信息;第二步算法为联合局部结构信息分布对齐算法,对训练集和测试集进行域适应,在保持各自样本结构信息的同时,最小化分布误差.实验结果表明:本文算法中每一步迁移学习算法均有效;与相关算法相比,本文算法准确率显著较高,达97.5%. 展开更多
关键词 语音诊断 帕金森症(PD) 两步式稀疏迁移学习 卷积稀疏迁移学习 域适应
在线阅读 下载PDF
基于迁移鲁棒稀疏编码的图像表示方法 被引量:11
5
作者 赵鹏 王维 +1 位作者 刘慧婷 纪霞 《计算机学报》 EI CSCD 北大核心 2017年第10期2421-2432,共12页
图像表示是图像处理和图像理解研究中的关键问题之一.在图像的低层表示上有很多重要的研究工作,例如HOG,SIFT等.然而在图像的低层表示和高层语义间仍然存在着巨大的鸿沟.因而,很多机器学习的方法被用来学习图像的高层表示,例如主成分分... 图像表示是图像处理和图像理解研究中的关键问题之一.在图像的低层表示上有很多重要的研究工作,例如HOG,SIFT等.然而在图像的低层表示和高层语义间仍然存在着巨大的鸿沟.因而,很多机器学习的方法被用来学习图像的高层表示,例如主成分分析,稀疏编码,非负矩阵分解以及低秩表示等.传统机器学习假设标记图像和未标记图像服从同一分布,图像表示的误差服从高斯分布.然而现实中图像数据更新速度快,而且图像生成环境存在差异性,导致未标记图像与已标记图像不服从同一分布,因而需要重新标记数据和训练模型.并且图像数据容易出现异常,例如遮挡、腐蚀等等,从而不能再用高斯分布来估计误差.迁移学习允许标记图像(训练数据)和未标记图像(测试数据)服从不同的分布.基于迁移学习的图像表示方法学习一个新的好的特征空间.在这个新的特征空间下,可以较好地描述标记图像和未标记图像的语义信息.并且在这个新的特征空间下,从训练集中标记图像上学习到的统计模型(例如分类模型),可以较好地迁移到测试集中未标记图像上,从而充分利用已标记图像,将学习到的知识迁移到未标记的图像集上.该文提出了一种基于迁移鲁棒稀疏编码的图像表示方法,引入权值矩阵削弱异常点对分类的干扰,使用稀疏编码获得数据的高级语义,利用最小化最大均值差异缩小源域和目标域图像集之间的分布差异以及图拉普拉斯项保留图像集的几何特性.该文的主要贡献在于:一是通过权值矩阵泛化残差分布,使得所提出的基于迁移鲁棒稀疏编码的图像表示方法能大大减少异常点对编码和字典学习的影响;二是在鲁棒字典学习过程中,采用正则化参数代替迁移稀疏编码中的字典约束,从而将其转化为无约束优化问题,避免了拉格朗日求解法的复杂性.在几个通用迁移学习数据集上的对比实验结果表明,该文所提出的图像表示方法在分类上的平均准确率比其它6种相关主流方法均有不同程度的提高,证明了其有效性和鲁棒性. 展开更多
关键词 迁移学习 鲁棒稀疏编码 图像表示 最大均值差异 异常点
在线阅读 下载PDF
稀疏分层概率自组织图实例迁移学习方法 被引量:3
6
作者 吴蕾 田儒雅 张学福 《计算机应用》 CSCD 北大核心 2016年第3期692-696,730,共6页
针对基于实例的迁移学习在关联多源异构领域数据时遇到的数据颗粒度不匹配问题,以单领域分层概率自组织图(Hi PSOG)聚类方法为基础,提出一种具有迁移学习能力的稀疏化非监督分层概率自组织图(TSHi PSOG)方法。首先,在源领域和目标领域... 针对基于实例的迁移学习在关联多源异构领域数据时遇到的数据颗粒度不匹配问题,以单领域分层概率自组织图(Hi PSOG)聚类方法为基础,提出一种具有迁移学习能力的稀疏化非监督分层概率自组织图(TSHi PSOG)方法。首先,在源领域和目标领域分别基于概率混合多变量高斯分布生成分层自组织模型以便在多领域中分别提取不同粒度的表示向量,并用稀疏图方法通过概率准则控制模型增长;其次,利用最大信息系数(MIC),在具有富信息的源领域中寻找与目标领域表示向量最相似的表示向量,并利用这些源领域表示向量的类别标签细化目标领域数据分类;最后,在国际通用分类数据集20新闻组数据集和垃圾邮件检测数据集上进行了实验,结果表明算法可以利用源领域的有用信息辅助目标领域的分类问题,并使分类准确率最高提高约15.26%和9.05%;对比其他经典迁移学习方法,通过稀疏分层可以挖掘不同颗粒度的表示向量,分类准确率最高提高约4.48%和4.13%。 展开更多
关键词 机器学习 迁移学习 非监督学习 分层算法 稀疏图方法
在线阅读 下载PDF
基于语音卷积稀疏迁移学习和并行优选的帕金森病分类算法研究 被引量:2
7
作者 张小恒 李勇明 +4 位作者 王品 曾孝平 颜芳 张艳玲 承欧梅 《电子与信息学报》 EI CSCD 北大核心 2019年第7期1641-1649,共9页
基于语音数据分析的帕金森病(PD)诊断存在样本量小、训练与测试数据分布差异明显的问题。为了解决这些问题,需要从降维和样本扩充两个方面同时进行。因此,该文提出结合加噪加权卷积稀疏迁移学习和样本特征并行优选的PD分类算法。该算法... 基于语音数据分析的帕金森病(PD)诊断存在样本量小、训练与测试数据分布差异明显的问题。为了解决这些问题,需要从降维和样本扩充两个方面同时进行。因此,该文提出结合加噪加权卷积稀疏迁移学习和样本特征并行优选的PD分类算法。该算法可从源域的公共语音库中学习有利于表达PD语音特征的有效结构信息,同时完成降维和样本间接扩充。样本特征并行优选考虑到了样本和语音特征间的关系,从而有助于获取高质量的特征。首先,对公共语音库进行特征提取构造公共特征库;然后,以公共特征库对PD目标域的训练数据集及测试数据集进行稀疏编码,这里分别采用传统稀疏编码(SC)与卷积稀疏编码(CSC)两种稀疏编码方法;接着,对编码后的语音样本段和特征数据进行同时优选;最后,采用支撑向量机(SVM)进行分类。实验结果表明,该算法针对受试者的分类准确率最高值达到了95.0%,均值达到了86.0%,较相关被比较算法有较大提高。此外,研究还发现,相较于传统稀疏编码方法,卷积稀疏编码更有利于提取PD语音数据的高层特征;同样,迁移学习也有利于提高该算法性能。 展开更多
关键词 迁移学习 帕金森病 稀疏编码 卷积稀疏编码 语音样本特征并行优选
在线阅读 下载PDF
迁移知识辅助的语义稀疏服务聚类方法 被引量:1
8
作者 田刚 何克清 +1 位作者 高莹 黄颖 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2015年第5期116-122,共7页
现有服务聚类方法缺乏对服务描述语义稀疏情境下的研究,因此将迁移学习技术应用到服务聚类领域,尝试解决语义稀疏服务聚类的问题。通过对偶PLSA模型将目标领域和辅助领域语料知识进行融合,利用无监督的方式迁移辅助领域知识,从而提高目... 现有服务聚类方法缺乏对服务描述语义稀疏情境下的研究,因此将迁移学习技术应用到服务聚类领域,尝试解决语义稀疏服务聚类的问题。通过对偶PLSA模型将目标领域和辅助领域语料知识进行融合,利用无监督的方式迁移辅助领域知识,从而提高目标领域语义稀疏服务聚类的能力。实验结果表明,该方法能够提高语义稀疏服务的聚类效果。与K-Means、Agglomerative和PLSA等方法相比,该方法在聚类纯度、熵上均具有更好的性能。 展开更多
关键词 Web服务聚类 迁移学习 语义稀疏
在线阅读 下载PDF
联合聚类和评分矩阵共享的协同过滤推荐 被引量:2
9
作者 李翔 朱全银 《计算机科学与探索》 CSCD 2014年第6期751-759,共9页
针对传统协同过滤推荐(collaborative filtering recommendation,CFR)受数据聚类预处理,评分矩阵稀疏性影响较大和多个评分矩阵之间不能知识迁移的问题,提出了一种基于联合聚类和评分矩阵共享的协同过滤推荐方法,以提高推荐系统精度和... 针对传统协同过滤推荐(collaborative filtering recommendation,CFR)受数据聚类预处理,评分矩阵稀疏性影响较大和多个评分矩阵之间不能知识迁移的问题,提出了一种基于联合聚类和评分矩阵共享的协同过滤推荐方法,以提高推荐系统精度和泛化能力。该方法首先通过联合聚类对原始评分矩阵进行用户和项目两个维度的聚类;然后对评分矩阵进行分解并取得共享组级评分矩阵;最后利用共享组级评分矩阵和迁移学习方法进行评分预测。对MovieLents和Book-Crossing两个数据集进行了仿真实验,结果表明该方法相比传统方法平均绝对误差减少近8%,有效地提高了协同过滤推荐的预测精度,为协同过滤推荐的应用提供借鉴。 展开更多
关键词 推荐系统 协同过滤 大数据 稀疏矩阵 联合聚类 迁移学习
在线阅读 下载PDF
基于稀疏子空间聚类的跨域人脸迁移学习方法 被引量:4
10
作者 朱俊勇 逯峰 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第5期1-7,共7页
人脸识别的效果很大程度上依赖于已标定的训练数据的规模,当训练样本严重不足时类内及类间分布的估计将会出现严重偏差。考虑到人工标定的成本过高,如果能对与目标问题相关的一些已有数据加以利用,以此来取代人工标定数据或减少人工标... 人脸识别的效果很大程度上依赖于已标定的训练数据的规模,当训练样本严重不足时类内及类间分布的估计将会出现严重偏差。考虑到人工标定的成本过高,如果能对与目标问题相关的一些已有数据加以利用,以此来取代人工标定数据或减少人工标定的数据量,将为训练样本不足的人脸识别问题提供一套可行的解决方案。为此,拟针对这一问题发展出一种基于稀疏子空间聚类和鲁棒主成分分析的人脸迁移学习方法,在辅助数据满足多线性子空间假设下,能从无类标的异源辅助数据中实现信息迁移,挖掘对目标分类问题有益的成分。 展开更多
关键词 稀疏子空间聚类 低秩矩阵分解 鲁棒主成分分析 跨域人脸迁移学习
在线阅读 下载PDF
基于联合字典稀疏表示的遥感图像超分辨率制图 被引量:1
11
作者 赵春晖 杨怀娟 +2 位作者 刘务 朱海峰 万晓青 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2018年第8期1400-1408,共9页
超分辨率制图是一种由低分辨率遥感图像获得高分辨率土地覆盖图的技术,针对空间相关性原则不足以描述复杂地物模式的问题,本文提出了一种基于联合字典稀疏表示的超分辨率制图方法。利用迁移学习机制,使用自然图像训练高、低分辨率图块... 超分辨率制图是一种由低分辨率遥感图像获得高分辨率土地覆盖图的技术,针对空间相关性原则不足以描述复杂地物模式的问题,本文提出了一种基于联合字典稀疏表示的超分辨率制图方法。利用迁移学习机制,使用自然图像训练高、低分辨率图块联合字典,并根据高、低分辨率图像块对与其对应字典的稀疏表示间的一致性,将低分辨率丰度图像的稀疏表示与高分辨率字典结合生成高分辨率软分类图像,最后进行类分配从而获得高分辨率土地覆盖图。利用合成Landsat多光谱图像和NLCD 2001子图像对所提方法进行测试,并与几种现有的典型超分辨率制图方法进行比较,实验结果显示本文所提算法的超分辨率制图精度优于对比算法。 展开更多
关键词 遥感图像 超分辨率制图 稀疏表示 迁移学习 联合字典
在线阅读 下载PDF
基于单视图稀疏点的汽车三维模型重建 被引量:1
12
作者 王博 江祖毅 《武汉科技大学学报》 CAS 北大核心 2023年第4期296-302,共7页
基于深度学习的图像识别模型训练需要大量数据,而不同角度的汽车视图数据难以在短时间内收集,为此提出一种利用单视图稀疏点的汽车三维模型重建方法,依靠少量数据也能得到精确的结果。创建了包含3000多张不同汽车品牌的多视角二维汽车... 基于深度学习的图像识别模型训练需要大量数据,而不同角度的汽车视图数据难以在短时间内收集,为此提出一种利用单视图稀疏点的汽车三维模型重建方法,依靠少量数据也能得到精确的结果。创建了包含3000多张不同汽车品牌的多视角二维汽车图形数据集,并在TensorFlow框架下搭建了基于MobileNet V2网络和迁移学习的汽车视图角度识别系统,其结果能够进一步用于快速的模型匹配及重建;根据创建的汽车三维线框模型库以及二维关键点和三维模型的映射关系,利用带约束的最小二乘法求出模型库中不同模型对于重建的贡献量系数,直接由二维图片上稀疏的25个关键点生成三维模型。误差分析结果显示,重建的三维车身模型具有较高精度。 展开更多
关键词 三维模型重建 汽车造型 图像识别 单视图 稀疏点 MobileNet V2 迁移学习
在线阅读 下载PDF
L1 Graph联合转换学习模型的多观测样本分类算法
13
作者 卢辉斌 胡正平 高红霄 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第11期2634-2640,共7页
不同分布多观测样本分类问题中,训练样本和测试样本来自不同的域,针对如何利用转换学习提高不同分布多观测样本分类性能问题,提出L1-Graph联合转换学习的多观测样本分类算法。首先基于转换学习构建一种非负矩阵三因子分解框架,将其中不... 不同分布多观测样本分类问题中,训练样本和测试样本来自不同的域,针对如何利用转换学习提高不同分布多观测样本分类性能问题,提出L1-Graph联合转换学习的多观测样本分类算法。首先基于转换学习构建一种非负矩阵三因子分解框架,将其中不变信息作为源域到目标域的转换桥梁;其次,基于稀疏表示思路构造L1-Graph,自适应寻找数据近邻,保留样本及特征几何结构;最后,将两个互补目标函数联合到统一优化问题中,然后利用迭代算法解决优化问题,进而估计出测试样本类别。在USPS-Binary数字数据库、Three-Domain Object Benchmark数据库和ALOI数据库上进行对比实验,实验结果表明该方法的有效性,既提高了识别精度又保证了算法鲁棒性。 展开更多
关键词 稀疏表示 转换学习 域适应 多观测样本分类
在线阅读 下载PDF
基于稀疏编码的迁移学习及其在行人检测中的应用 被引量:4
14
作者 谢尧芳 苏松志 李绍滋 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期186-192,共7页
行人检测是计算机视觉领域中的研究热点,其实质是一个二分类问题.目前基于统计的行人检测技术已取得了一定进展,但大都需要大量的训练数据.针对这一问题,提出了一种基于迁移学习的半监督行人分类方法:首先基于稀疏编码,从任意的未标记... 行人检测是计算机视觉领域中的研究热点,其实质是一个二分类问题.目前基于统计的行人检测技术已取得了一定进展,但大都需要大量的训练数据.针对这一问题,提出了一种基于迁移学习的半监督行人分类方法:首先基于稀疏编码,从任意的未标记样本中,学习到一个紧凑、有效的特征表示;然后通过迁移学习,将学习到的特征表示方法迁移到行人分类中.在MIT行人数据库上的实验结果表明:该方法能有效地刻画出行人的特征,提高行人分类的性能,在标记样本少的情况下仍具有良好的分类效果,因此可应用于行人检测中. 展开更多
关键词 行人检测 行人分类 迁移学习 稀疏编码
在线阅读 下载PDF
双阶段帕金森病语音聚类包络卷积稀疏迁移学习算法 被引量:6
15
作者 张小恒 李勇明 王品 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第11期151-161,共11页
帕金森病(PD)语音识别算法研究对于其及时诊疗具有重要意义,但现有PD语音识别算法面临小样本数据量问题挑战。针对问题,本文提出双面双阶段均值聚类包络和卷积稀疏迁移学习算法。在双阶段学习方面,首先基于源数据集训练多组卷积核,然后... 帕金森病(PD)语音识别算法研究对于其及时诊疗具有重要意义,但现有PD语音识别算法面临小样本数据量问题挑战。针对问题,本文提出双面双阶段均值聚类包络和卷积稀疏迁移学习算法。在双阶段学习方面,首先基于源数据集训练多组卷积核,然后通过中间集得到最优卷积核并对目标集进行编码。在深度样本聚类包络方面,首先设计迭代均值聚类算法构建深度样本空间;然后进行样本特征同时选择并训练分类器模型;最后对不同样本空间的分类结果进行融合。实验选取代表性的PD语音数据集进行验证。实验结果表明,本文算法创新部分有效,与10多个经典和最新相关文献算法相比取得了显著改进,准确率达97.8%。此外,本文算法的时间复杂度不高,满足临床应用要求。 展开更多
关键词 帕金森病语音识别 包络学习 深度样本学习 均值聚类 双阶段卷积稀疏迁移学习
在线阅读 下载PDF
基于半监督子空间迁移的稀疏表示遥感图像场景分类方法 被引量:5
16
作者 周国华 蒋晖 +1 位作者 顾晓清 殷新春 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2021年第6期684-693,共10页
利用已有的标记数据对新领域图像进行分类是遥感图像场景分类的重要研究方向。提出了一种基于半监督子空间迁移的稀疏表示(sparse representation method based on semi-supervised transfer learning subspace,SR-SSTLS)遥感图像场景... 利用已有的标记数据对新领域图像进行分类是遥感图像场景分类的重要研究方向。提出了一种基于半监督子空间迁移的稀疏表示(sparse representation method based on semi-supervised transfer learning subspace,SR-SSTLS)遥感图像场景分类方法。为减少源域和目标域数据分布变化,将不同数据域的遥感图像投影至共享子空间。源域和目标域数据在投影子空间协同学习共享字典,使得带标记的源域数据辅助目标域模型的建立。同时,建立了基于源域、目标域、源域-目标域标记数据的拉普拉斯图矩阵和目标域未标记数据的拉普拉斯正则化项,使得目标域中的数据均得到很好编码。在多个遥感图像数据集上的实验结果均证明了SR-SSTLS方法的有效性。 展开更多
关键词 遥感图像场景分类 稀疏表示 半监督 子空间 迁移学习
在线阅读 下载PDF
基于迁移学习SAE的无人机目标识别算法研究 被引量:7
17
作者 谢冰 段哲民 +1 位作者 郑宾 殷云华 《红外与激光工程》 EI CSCD 北大核心 2018年第6期214-220,共7页
无人机在复杂战场环境下,因敌我双方无人机外形、颜色等特征较为相似,如何准确地对敌方无人机识别是实现其自主导航及作战任务执行的关键。由于受敌方无人机飞行速度、形状、尺寸、姿态等的改变及气象环境因素的影响,无法准确地对其进... 无人机在复杂战场环境下,因敌我双方无人机外形、颜色等特征较为相似,如何准确地对敌方无人机识别是实现其自主导航及作战任务执行的关键。由于受敌方无人机飞行速度、形状、尺寸、姿态等的改变及气象环境因素的影响,无法准确地对其进行识别与分类。针对这一问题,提出基于迁移学习卷积稀疏自动编码器(Sparse Auto-Encoder,SAE)实现对航拍多帧图像中敌方目标对象的识别与分类。算法首先借助SAE对源领域数据集中大量无标记样本进行无监督学习,获取其局部特征;然后,采用池化层卷积神经网络(CNN)算法提取目标图像全局特征;最后,送入Softmax回归模型实现目标对象的识别与分类。实验结果表明:与传统非迁移学习的SAE算法及基于底层视觉特征学习的识别算法相比,该算法具有更高的准确性。 展开更多
关键词 无人机自主导航 目标识别分类 稀疏自动编码器 卷积神经网络 迁移学习
在线阅读 下载PDF
融合多尺度图像的密集神经网络肺部肿瘤识别算法 被引量:9
18
作者 周涛 霍兵强 +4 位作者 陆惠玲 马宗军 叶鑫宇 董雅丽 刘珊 《光学精密工程》 EI CAS CSCD 北大核心 2021年第7期1695-1708,共14页
针对CT模态医学图像采用卷积神经网络训练时的特征提取不充分、特征维度较高等问题,本文提出了基于融合多尺度图像的非负稀疏协同表示分类的密集神经网络肺部肿瘤(Multi Scale DenseNet-NSCR)的识别方法。第一,使用迁移学习将预训练密... 针对CT模态医学图像采用卷积神经网络训练时的特征提取不充分、特征维度较高等问题,本文提出了基于融合多尺度图像的非负稀疏协同表示分类的密集神经网络肺部肿瘤(Multi Scale DenseNet-NSCR)的识别方法。第一,使用迁移学习将预训练密集神经网络模型初始化参数;第二,将肺部图像预处理,提取多尺度病灶ROI区域;第三,采用多尺度CT图像训练密集神经网络,提取全连接层的特征向量;第四,针对融合特征维度较高问题,采用非负稀疏协同表示分类器(NSCR)对特征向量进行表示,求解系数矩阵;第五,利用残差相似度进行分类。最后,采用AlexNet,DenseNetNet-201模型及三种分类算法(SVM、SRC、NSCR)两两组合模型进行对比试验,实验结果表明,Multiscale-DenseNet-NSCR分类效果优于其它模型,且特异性和灵敏度等各项评价指标也较高,该方法具有较好的鲁棒性和泛化能力。 展开更多
关键词 密集神经网络 多尺度医学图像 迁移学习 NSCR算法
在线阅读 下载PDF
基于深度稀疏辨别的跨领域图像分类 被引量:5
19
作者 杨涵方 周向东 《计算机工程》 CAS CSCD 北大核心 2018年第4期310-316,共7页
在图像分类任务中,由于图像背景、光照、拍摄角度等的变化,从源领域上训练的分类模型常常不适用于相关目标领域的图像数据。为此,提出一种基于深度卷积神经网络的迁移学习方法——稀疏辨别迁移模型。该方法通过自适应地学习目标领域辨... 在图像分类任务中,由于图像背景、光照、拍摄角度等的变化,从源领域上训练的分类模型常常不适用于相关目标领域的图像数据。为此,提出一种基于深度卷积神经网络的迁移学习方法——稀疏辨别迁移模型。该方法通过自适应地学习目标领域辨别性特征分布优化分类函数,同时与特征预处理方法相结合,可获得较好的互补性作用。实验结果表明,与现有的基准与深度迁移方法相比,该方法在Office-Caltech和Office-31 2个标准跨领域分类数据集上均取得了较好的分类性能。 展开更多
关键词 跨领域图像分类 深度学习 迁移学习 主成分分析 稀疏正则化
在线阅读 下载PDF
基于全卷积网络和自编码的高光谱图像分类 被引量:4
20
作者 董朋欣 董安国 +1 位作者 李楚婷 梁苗苗 《计算机工程与应用》 CSCD 北大核心 2022年第5期256-263,共8页
针对高光谱图像空间信息利用不足、标记样本数量较少的问题,提出一种基于全卷积网络和堆栈稀疏自编码的高光谱图像分类算法。基于迁移学习的思想,利用预训练好的全卷积网络FCN-8s,挖掘图像潜在的多尺度几何结构特征;选取其特征的像素邻... 针对高光谱图像空间信息利用不足、标记样本数量较少的问题,提出一种基于全卷积网络和堆栈稀疏自编码的高光谱图像分类算法。基于迁移学习的思想,利用预训练好的全卷积网络FCN-8s,挖掘图像潜在的多尺度几何结构特征;选取其特征的像素邻域信息,采用拼接融合的方法与原光谱信息进行融合;利用堆栈稀疏自编码网络完成最终的多尺度空谱特征提取,并通过Softmax分类器实现分类。对三组遥感图像进行实验,结果显示,所提算法极大改善了边界区域的分类效果。 展开更多
关键词 高光谱图像 全卷积网络 堆栈稀疏自编码 迁移学习
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部