Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application o...Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application of PMN-PT in high-power settings is rapidly evolving,material parameters are typically tested under low signal conditions(1 V),and effects of different PT(PbTiO_(3))contents on the performance of PMN-PT single crystals under high-power conditions remain unclear.This study developed a comprehensive high-power testing platform using the constant voltage method to evaluate performance of PMN-PT single crystals with different PT contents under high-power voltage stimulation.Using crystals sized at 10 mm×3 mm×0.5 mm as an example,this research explored changes in material parameters.The results exhibit that while trend of the parameter changes under high-power excitation was consistent across different PT contents,degree of the change varied significantly.For instance,a PMN-PT single crystal with 26%(in mol)PT content exhibited a 25%increase in the piezoelectric coefficient d_(31),a 13%increase in the elastic compliance coefficient s_(11)^(E),a 17%increase in the electromechanical coupling coefficient k_(31),and a 73%decrease in the mechanical quality factor Q_(m) when the power reached 7.90 W.As the PT content increased,the PMN-PT materials became more susceptible to temperature influences,significantly reducing the power tolerance and more readily reaching the depolarization temperatures.This led to loss of piezoelectric performance.Based on these findings,a clearer understanding of impact of PT content on performance of PMN-PT single crystals under high-power applications has been established,providing reliable data to support design of sensors or transducers using PMN-PT as the sensitive element.展开更多
Texture evolution and inhomogeneous deformation of polycrystalline Cu during uniaxial compression are investigated at the grain scale by combining crystal plasticity finite element method(CPFEM) with particle swarm op...Texture evolution and inhomogeneous deformation of polycrystalline Cu during uniaxial compression are investigated at the grain scale by combining crystal plasticity finite element method(CPFEM) with particle swarm optimization(PSO) algorithm. The texture-based representative volume element(TBRVE) is used in the crystal plasticity finite element model, where a given number of crystallographic orientations are obtained by means of discretizing the orientation distribution function(ODF) based on electron backscattered diffraction(EBSD) experiment data. Three-dimensional grains with different morphologies are generated on the basis of Voronoi tessellation. The PSO algorithm plays a significant role in identifying the material parameters and saving computational time. The macroscopic stress–strain curve is predicted based on CPFEM, where the simulation results are in good agreement with the experimental ones. Therefore, CPFEM is a powerful candidate for capturing the texture evolution and clarifying the inhomogeneous plastic deformation of polycrystalline Cu. The simulation results indicate that the <110> fiber texture is generated finally with the progression of plastic deformation. The inhomogeneous distribution of rotation angles lays the foundation for the inhomogeneous deformation of polycrystalline Cu in terms of grain scale.展开更多
The method for pulling large diameter single crystals with the abovesaid difficulties avoided is developed.Here the free melt surface does not depend on the growing crystal diameter and remains minimal during the whol...The method for pulling large diameter single crystals with the abovesaid difficulties avoided is developed.Here the free melt surface does not depend on the growing crystal diameter and remains minimal during the whole growing process.The essence of this method is that at the stage of radial crystal growth the melt level in the crucible of a variable cross-section(for instance,in a conical crucible)is raised.展开更多
5-amino-4-nitrobenzo[1,2-c:3,4-c']bis([1,2,5]oxadiazole)1,6-dioxide(CL-18)exhibits significant potential as an initiating explosive.However,its current synthesis process remains non-scalable due to low yields and ...5-amino-4-nitrobenzo[1,2-c:3,4-c']bis([1,2,5]oxadiazole)1,6-dioxide(CL-18)exhibits significant potential as an initiating explosive.However,its current synthesis process remains non-scalable due to low yields and safety risks.In this study,we have developed a simple and safe synthetic route for CL-18.It was synthesized from 3,5-dihaloanisole in a four-step reaction with an overall yield exceeding 60%,surpassing all reported yields in the literature.Subsequently,recrystallization of CL-18 was successfully achieved by carefully selecting appropriate solvents and antisolvents to reduce its mechanical sensitivity.Ultimately,when DMF-ethanol was employed as the recrystallization solvent system,satisfactory product yield(>90%)and reduced mechanical sensitivity(IS=15 J;FS=216 N)were obtained.Additionally,CL-18 is derived from the rearrangement of oxygen atoms on i-CL-18 furoxan,and a comparative analysis of their physicochemical properties was conducted.The thermal stability of both compounds is similar,with onset decomposition temperatures recorded at 186 and 182℃respectively.Similarly,they exhibit 5 s breaking point temperatures of 236 and 237℃.Additionally,we present novel insights into the positional-isomerization-laser-ignition performance of CL-18 and its isomer i-CL-18 using laser irradiation for the first time.Remarkably,our findings demonstrate that i-CL-18 exhibits enhanced laser sensitivity,as it can be directly ignited by a 1064 nm wavelength laser,whereas CL-18 lacks this characteristic.展开更多
冰晶结冰是威胁航空飞行安全的重要因素之一,研究冰风洞的结冰机理是研究高空冰晶结冰的重要基础。采用基于欧拉方法的数值模拟,实现冰风洞流场与粒子参数的双向耦合,以NRC大尺寸冰风洞为模型,计算分析了风洞进口不同平均体积直径(Media...冰晶结冰是威胁航空飞行安全的重要因素之一,研究冰风洞的结冰机理是研究高空冰晶结冰的重要基础。采用基于欧拉方法的数值模拟,实现冰风洞流场与粒子参数的双向耦合,以NRC大尺寸冰风洞为模型,计算分析了风洞进口不同平均体积直径(Median Volume Diameter,MVD)、总含水量(Total Water Content,TWC)以及相对湿度的情况下,粒子温度、液态水占总含水量的比例(Liquid Water Content/Total Water Content,LWC/TWC)、MVD以及流场温度等粒子和流场参数的沿程变化规律。结果表明:粒子运动速度受MVD、TWC和相对湿度的影响均不大;粒子温度变化受相对湿度影响较大,TWC的增加增大了粒子与流场整体的热交换;风洞出口MVD的大小受初始MVD大小、TWC以及相对湿度的影响均较大;受风洞收缩型构型以及粒子在风洞中的换热影响,空气温度沿流程是降低的,相对湿度沿程是增加的。初始TWC、MVD和相对湿度的变化均对风洞沿程的流场温度和相对湿度造成影响;增大TWC、增加MVD以及增大相对湿度,均有利于在风洞出口形成冰晶。展开更多
基金Research and Development Project on Voltage Sensors by China Southern Power Grid Digital Research Institute(210000KK52220017)。
文摘Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application of PMN-PT in high-power settings is rapidly evolving,material parameters are typically tested under low signal conditions(1 V),and effects of different PT(PbTiO_(3))contents on the performance of PMN-PT single crystals under high-power conditions remain unclear.This study developed a comprehensive high-power testing platform using the constant voltage method to evaluate performance of PMN-PT single crystals with different PT contents under high-power voltage stimulation.Using crystals sized at 10 mm×3 mm×0.5 mm as an example,this research explored changes in material parameters.The results exhibit that while trend of the parameter changes under high-power excitation was consistent across different PT contents,degree of the change varied significantly.For instance,a PMN-PT single crystal with 26%(in mol)PT content exhibited a 25%increase in the piezoelectric coefficient d_(31),a 13%increase in the elastic compliance coefficient s_(11)^(E),a 17%increase in the electromechanical coupling coefficient k_(31),and a 73%decrease in the mechanical quality factor Q_(m) when the power reached 7.90 W.As the PT content increased,the PMN-PT materials became more susceptible to temperature influences,significantly reducing the power tolerance and more readily reaching the depolarization temperatures.This led to loss of piezoelectric performance.Based on these findings,a clearer understanding of impact of PT content on performance of PMN-PT single crystals under high-power applications has been established,providing reliable data to support design of sensors or transducers using PMN-PT as the sensitive element.
基金Projects(51305091,51475101) supported by the National Natural Science Foundation of ChinaProject(20132304120025) supported by Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘Texture evolution and inhomogeneous deformation of polycrystalline Cu during uniaxial compression are investigated at the grain scale by combining crystal plasticity finite element method(CPFEM) with particle swarm optimization(PSO) algorithm. The texture-based representative volume element(TBRVE) is used in the crystal plasticity finite element model, where a given number of crystallographic orientations are obtained by means of discretizing the orientation distribution function(ODF) based on electron backscattered diffraction(EBSD) experiment data. Three-dimensional grains with different morphologies are generated on the basis of Voronoi tessellation. The PSO algorithm plays a significant role in identifying the material parameters and saving computational time. The macroscopic stress–strain curve is predicted based on CPFEM, where the simulation results are in good agreement with the experimental ones. Therefore, CPFEM is a powerful candidate for capturing the texture evolution and clarifying the inhomogeneous plastic deformation of polycrystalline Cu. The simulation results indicate that the <110> fiber texture is generated finally with the progression of plastic deformation. The inhomogeneous distribution of rotation angles lays the foundation for the inhomogeneous deformation of polycrystalline Cu in terms of grain scale.
文摘The method for pulling large diameter single crystals with the abovesaid difficulties avoided is developed.Here the free melt surface does not depend on the growing crystal diameter and remains minimal during the whole growing process.The essence of this method is that at the stage of radial crystal growth the melt level in the crucible of a variable cross-section(for instance,in a conical crucible)is raised.
基金support from the National Natural Science Foundation of China(Grant No.22175160)the Science Challenge Project(Grant No.TZ2018004)。
文摘5-amino-4-nitrobenzo[1,2-c:3,4-c']bis([1,2,5]oxadiazole)1,6-dioxide(CL-18)exhibits significant potential as an initiating explosive.However,its current synthesis process remains non-scalable due to low yields and safety risks.In this study,we have developed a simple and safe synthetic route for CL-18.It was synthesized from 3,5-dihaloanisole in a four-step reaction with an overall yield exceeding 60%,surpassing all reported yields in the literature.Subsequently,recrystallization of CL-18 was successfully achieved by carefully selecting appropriate solvents and antisolvents to reduce its mechanical sensitivity.Ultimately,when DMF-ethanol was employed as the recrystallization solvent system,satisfactory product yield(>90%)and reduced mechanical sensitivity(IS=15 J;FS=216 N)were obtained.Additionally,CL-18 is derived from the rearrangement of oxygen atoms on i-CL-18 furoxan,and a comparative analysis of their physicochemical properties was conducted.The thermal stability of both compounds is similar,with onset decomposition temperatures recorded at 186 and 182℃respectively.Similarly,they exhibit 5 s breaking point temperatures of 236 and 237℃.Additionally,we present novel insights into the positional-isomerization-laser-ignition performance of CL-18 and its isomer i-CL-18 using laser irradiation for the first time.Remarkably,our findings demonstrate that i-CL-18 exhibits enhanced laser sensitivity,as it can be directly ignited by a 1064 nm wavelength laser,whereas CL-18 lacks this characteristic.
文摘冰晶结冰是威胁航空飞行安全的重要因素之一,研究冰风洞的结冰机理是研究高空冰晶结冰的重要基础。采用基于欧拉方法的数值模拟,实现冰风洞流场与粒子参数的双向耦合,以NRC大尺寸冰风洞为模型,计算分析了风洞进口不同平均体积直径(Median Volume Diameter,MVD)、总含水量(Total Water Content,TWC)以及相对湿度的情况下,粒子温度、液态水占总含水量的比例(Liquid Water Content/Total Water Content,LWC/TWC)、MVD以及流场温度等粒子和流场参数的沿程变化规律。结果表明:粒子运动速度受MVD、TWC和相对湿度的影响均不大;粒子温度变化受相对湿度影响较大,TWC的增加增大了粒子与流场整体的热交换;风洞出口MVD的大小受初始MVD大小、TWC以及相对湿度的影响均较大;受风洞收缩型构型以及粒子在风洞中的换热影响,空气温度沿流程是降低的,相对湿度沿程是增加的。初始TWC、MVD和相对湿度的变化均对风洞沿程的流场温度和相对湿度造成影响;增大TWC、增加MVD以及增大相对湿度,均有利于在风洞出口形成冰晶。