Oil and gas pipeline networks are a key link in the coordinated development of oil and gas both upstream and downstream.To improve the reliability and safety of the oil and gas pipeline network, inspections are implem...Oil and gas pipeline networks are a key link in the coordinated development of oil and gas both upstream and downstream.To improve the reliability and safety of the oil and gas pipeline network, inspections are implemented to minimize the risk of leakage, spill and theft, as well as documenting actual incidents. In recent years, unmanned aerial vehicles have been recognized as a promising option for inspection due to their high efficiency. However, the integrated optimization of unmanned aerial vehicle inspection for oil and gas pipeline networks, including physical feasibility, the performance of mission, cooperation, real-time implementation and three-dimensional(3-D) space, is a strategic problem due to its large-scale,complexity as well as the need for efficiency. In this work, a novel mixed-integer nonlinear programming model is proposed that takes into account the constraints of the mission scenario and the safety performance of unmanned aerial vehicles. To minimize the total length of the inspection path, the model is solved by a two-stage solution method. Finally, a virtual pipeline network and a practical pipeline network are set as two examples to demonstrate the performance of the optimization schemes. Moreover, compared with the traditional genetic algorithm and simulated annealing algorithm, the self-adaptive genetic simulated annealing algorithm proposed in this paper provides strong stability.展开更多
The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy ...The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.展开更多
Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growt...Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growth and spontaneous shuttle effect of active species have prohibited their practical implementation.Herein,a double-layered protective film based on zinc-ethylenediamine tetramethylene phosphonic acid(ZEA)artificial film and ZnF2-rich solid electrolyte interphase(SEI)layer has been successfully fabricated on the zinc metal anode via electrode/electrolyte synergistic optimization.The ZEA-based artificial film shows strong affinity for the ZnF2-rich SEI layer,therefore effectively suppressing the SEI breakage and facilitating the construction of double-layered protective film on the zinc metal anode.Such double-layered architecture not only modulates Zn2+flux and suppresses the zinc dendrite growth,but also blocks the direct contact between the metal anode and electrolyte,thus mitigating the corrosion from the active species.When employing optimized metal anodes and electrolytes,the as-developed zinc-(dual)halogen batteries present high areal capacity and satisfactory cycling stability.This work provides a new avenue for developing aqueous zinc-(dual)halogen batteries.展开更多
This review article provides a comprehensive analysis of nesting optimization algorithms in the shipbuilding industry,emphasizing their role in improving material utilization,minimizing waste,and enhancing production ...This review article provides a comprehensive analysis of nesting optimization algorithms in the shipbuilding industry,emphasizing their role in improving material utilization,minimizing waste,and enhancing production efficiency.The shipbuilding process involves the complex cutting and arrangement of steel plates,making the optimization of these operations vital for cost-effectiveness and sustainability.Nesting algorithms are broadly classified into four categories:exact,heuristic,metaheuristic,and hybrid.Exact algorithms ensure optimal solutions but are computationally demanding.In contrast,heuristic algorithms deliver quicker results using practical rules,although they may not consistently achieve optimal outcomes.Metaheuristic algorithms combine multiple heuristics to effectively explore solution spaces,striking a balance between solution quality and computational efficiency.Hybrid algorithms integrate the strengths of different approaches to further enhance performance.This review systematically assesses these algorithms using criteria such as material dimensions,part geometry,component layout,and computational efficiency.The findings highlight the significant potential of advanced nesting techniques to improve material utilization,reduce production costs,and promote sustainable practices in shipbuilding.By adopting suitable nesting solutions,shipbuilders can achieve greater efficiency,optimized resource management,and superior overall performance.Future research directions should focus on integrating machine learning and real-time adaptability to further enhance nesting algorithms,paving the way for smarter,more sustainable manufacturing practices in the shipbuilding industry.展开更多
Phase-matching quantum-key distribution(PM-QKD)has achieved significant results in various practical applications.However,real-time communication requires dynamic adjustment and optimization of key parameters during c...Phase-matching quantum-key distribution(PM-QKD)has achieved significant results in various practical applications.However,real-time communication requires dynamic adjustment and optimization of key parameters during communication.In this letter,we predict the PM-QKD parameters using nature-inspired algorithms(NIAs).The results are obtained from an exhaustive traversal algorithm(ETA),which serves as a benchmark.We mainly study the parameter optimization effects of the two NIAs:ant colony optimization(ACO)and the genetic algorithm(GA).The configuration of the inherent parameters of these algorithms in the decoy-state PM-QKD is also discussed.The simulation results indicate that the parameters obtained by the ACO exhibit superior convergence and stability,whereas the GA results are relatively scattered.Nevertheless,more than 97%of the key rates predicted by both algorithms are highly consistent with the optimal key rate.Moreover,the relative error of the key rates remained below 10%.Furthermore,NIAs maintain power consumption below 8 W and require three orders of magnitude less computing time than ETA.展开更多
Optimizing frequency configurations for qubits and gates in superconducting quantum chips presents a complex NP-complete challenge,critical for mitigating decoherence and crosstalk.This paper introduces a neural netwo...Optimizing frequency configurations for qubits and gates in superconducting quantum chips presents a complex NP-complete challenge,critical for mitigating decoherence and crosstalk.This paper introduces a neural network-based approach,leveraging the network as a surrogate model to predict frequency errors.The method employs a closed-loop Bayesian optimization framework to iteratively refine configurations,guided by the network’s knowledge of nonlinear error mechanisms.By focusing on localized chip windows,the optimization identifies optimal frequency settings that minimize errors.The approach is validated through randomized and cross-entropy benchmarking,showing improved energy calculations when optimizing frequency configurations for a crosstalkaware hardware-efficient ansatz in variational quantum eigensolvers on superconducting quantum chips.展开更多
Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stab...Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.展开更多
Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability...Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches.展开更多
The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches...The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches between the parameters of the received amplitude modulation(AM) signals and the system's linear workspace and demodulation operating points can cause severe distortion in the demodulated signals. To address this, the article proposes a method for determining the operational parameters based on the mean square error(MSE) and total harmonic distortion(THD) assessments and presents strategies for optimizing the system's operational parameters focusing on linear response characteristics(LRC) and linear dynamic range(LDR). Specifically, we employ a method that minimizes the MSE to define the system's linear workspace, thereby ensuring the system has a good LRC while maximizing the LDR. To ensure that the signal always operates within the linear workspace, an appropriate carrier amplitude is set as the demodulation operating point. By calculating the THD at different operating points, the LRC performance within different regions of the linear workspace is evaluated, and corresponding optimization strategies based on the range of signal strengths are proposed. Moreover, to more accurately restore the baseband signal, we establish a mapping relationship between the carrier Rabi frequency and the transmitted power of the probe light, and optimize the slope of the linear demodulation function to reduce the MSE to less than 0.8×10^(-4). Finally, based on these methods for determining the operational parameters, we explore the effects of different laser Rabi frequencies on the system performance, and provide optimization recommendations. This research provides robust support for the design of high-performance Rydberg atom-based AM receivers.展开更多
Blades are important parts of rotating machinery such as marine gas turbines and wind turbines,which are exposed to harsh environments during mechanical operations,including centrifugal loads,aerodynamic forces,or hig...Blades are important parts of rotating machinery such as marine gas turbines and wind turbines,which are exposed to harsh environments during mechanical operations,including centrifugal loads,aerodynamic forces,or high temperatures.These demanding working conditions considerably influence the dynamic performance of blades.Therefore,because of the challenges posed by blades in complex working environments,in-depth research and optimization are necessary to ensure that blades can operate safely and efficiently,thus guaranteeing the reliability and performance of mechanical systems.Focusing on the vibration analysis of blades in rotating machinery,this paper conducts a comprehensive literature review on the research advancements in vibration modeling and structural optimization of blades under complex operational conditions.First,the paper outlines the development of several modeling theories for rotating blades,including one-dimensional beam theory,two-dimensional plate-shell theory,and three-dimensional solid theory.Second,the research progress in the vibrational analysis of blades under aerodynamic loads,thermal environments,and crack factors is separately discussed.Finally,the developments in rotating blade structural optimization are presented from material optimization and shape optimization perspectives.The methodology and theory of analyzing and optimizing blade vibration characteristics under multifactorial operating conditions are comprehensively outlined,aiming to assist future researchers in proposing more effective and practical approaches for the vibration analysis and optimization of blades.展开更多
Electron beam fluorescence technology is an advanced non-contact measurement in rarefied flow fields,and the fluorescence signal intensity is positively correlated with the electron beam current.The ion bombardment se...Electron beam fluorescence technology is an advanced non-contact measurement in rarefied flow fields,and the fluorescence signal intensity is positively correlated with the electron beam current.The ion bombardment secondary emission electron gun is suitable for the technology.To enhance the beam current,COMSOL simulations and analyses were conducted to examine plasma density distribution in the discharge chamber under the effects of various conditions and the electric field distribution between the cathode and the spacer gap.The anode shape and discharge pressure conditions were optimized to increase plasma density.Additionally,an improved spacer structure was designed with the dual purpose of enhancing the electric field distribution between the cathode-spacer gaps and improving vacuum differential effects.This design modification aims to increase the pass rate of secondary electrons.Both simulation and experimental results demonstrated that the performance of the optimized electron gun was effectively enhanced.When the electrode voltage remains constant and the discharge gas pressure is adjusted to around 8 Pa,the maximum beam current was increased from 0.9 mA to 1.6 mA.展开更多
Accurately predicting the powder factor during blasting is essential for sustainable production planning in low-grade mines.This research presents a method for predicting powder factor based on the heterogeneity of ro...Accurately predicting the powder factor during blasting is essential for sustainable production planning in low-grade mines.This research presents a method for predicting powder factor based on the heterogeneity of rock mass rating(RMR).Considering a low-grade metal mine as an example,this study exploited geostatistical methods to obtain independent RMR for each block unit.A three-dimensional spatial distribution model for the powder factor was developed on the basis of the relationships between the RMR and the powder factor.Subsequently,models for blasting cost and mining value were built and employed to optimize the open-pit limit.The multi-variable model based on the RMR performed well in predicting the powder factor,achieving a correlation coefficient of 0.88(root mean square error of 4.3)and considerably outperforming the uniaxial compressive strength model.After model optimization,the mean size and standard deviation of the fragments in the blast pile decreased by 8.5%and 35.1%,respectively,whereas the boulder yield and its standard deviation decreased by 33.3%and 58.8%,respectively.Additionally,optimizing the open-pit limit using this method reduced the amount of rock,increased the amount of ore,and lowered blasting costs,thereby enhancing the economic efficiency of the mine.This study provides valuable insights for blasting design and mining decisions,demonstrating the advantages and potential applications of powder factor prediction based on the heterogeneity of rock mass quality.展开更多
This paper proposed a new libration decoupling analytical speed function(LD-ASF)in lieu of the classic analytical speed function to control the climber's speed along a partial space elevator to improve libration s...This paper proposed a new libration decoupling analytical speed function(LD-ASF)in lieu of the classic analytical speed function to control the climber's speed along a partial space elevator to improve libration stability in cargo transportation.The LD-ASF is further optimized for payload transportation efficiency by a novel coordinate game theory to balance competing control objectives among payload transport speed,stable end body's libration,and overall control input via model predictive control.The transfer period is divided into several sections to reduce computational burden.The validity and efficacy of the proposed LD-ASF and coordinate game-based model predictive control are demonstrated by computer simulation.Numerical results reveal that the optimized LD-ASF results in higher transportation speed,stable end body's libration,lower thrust fuel consumption,and more flexible optimization space than the classic analytical speed function.展开更多
In short-term operation of natural gas network,the impact of demand uncertainty is not negligible.To address this issue we propose a two-stage robust model for power cost minimization problem in gunbarrel natural gas ...In short-term operation of natural gas network,the impact of demand uncertainty is not negligible.To address this issue we propose a two-stage robust model for power cost minimization problem in gunbarrel natural gas networks.The demands between pipelines and compressor stations are uncertain with a budget parameter,since it is unlikely that all the uncertain demands reach the maximal deviation simultaneously.During solving the two-stage robust model we encounter a bilevel problem which is challenging to solve.We formulate it as a multi-dimensional dynamic programming problem and propose approximate dynamic programming methods to accelerate the calculation.Numerical results based on real network in China show that we obtain a speed gain of 7 times faster in average without compromising optimality compared with original dynamic programming algorithm.Numerical results also verify the advantage of robust model compared with deterministic model when facing uncertainties.These findings offer short-term operation methods for gunbarrel natural gas network management to handle with uncertainties.展开更多
Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption o...Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption of wind generators.In this study,a two-stage reactive power optimization method based on the alternating direction method of multipliers(ADMM)algorithm is proposed for achieving optimal reactive power dispatch in wind farm-integrated distribution systems.Unlike existing optimal reactive power control methods,the proposed method enables distributed reactive power flow optimization with a two-stage optimization structure.Furthermore,under the partition concept,the consensus protocol is not needed to solve the optimization problems.In this method,the influence of the wake effect of each wind turbine is also considered in the control design.Simulation results for a mid-voltage distribution system based on MATLAB verified the effectiveness of the proposed method.展开更多
Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO sate...Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput.展开更多
To address the two critical issues of evaluating the necessity of implementing cooling techniques and achieving real-time temperature control of drilling fluids underground in the current drilling fluid cooling techno...To address the two critical issues of evaluating the necessity of implementing cooling techniques and achieving real-time temperature control of drilling fluids underground in the current drilling fluid cooling technology,we first established a temperature and pressure coupled downhole heat transfer model,which can be used in both water-based and oil-based drilling fluid.Then,fourteen factors,which could affect wellbore temperature,were analyzed.Based on the standard deviation of the downhole temperature corresponding to each influencing factor,the influence of each factor was quantified.The influencing factors that can be used to guide the drilling fluid's cooling technology were drilling fluid thermal conductivity,drilling fluid heat capacity,drilling fluid density,drill strings rotation speed,pump rate,viscosity,ROP,and injection temperature.The nondominated sorting genetic algorithm was used to optimize these six parameters,but the optimization process took 182 min.Combining these eight parameters'influence rules with the nondominated sorting genetic algorithm can reduce the optimization time to 108 s.Theoretically,the downhole temperature has been demonstrated to increase with the inlet temperature increasing linearly under quasi-steady states.Combining this law and PID,the downhole temperature can be controlled,which can reduce the energy for cooling the surface drilling fluid and can ensure the downhole temperature reaches the set value as soon as possible.展开更多
Catenary optics enables metasurfaces with higher efficiency and wider bandwidth,and is highly anticipated in the imaging system,super-resolution lithography,and broadband absorbers.However,the periodic boundary approx...Catenary optics enables metasurfaces with higher efficiency and wider bandwidth,and is highly anticipated in the imaging system,super-resolution lithography,and broadband absorbers.However,the periodic boundary approximation without considering aperiodic electromagnetic crosstalk poses challenges for catenary optical devices to reach their performance limits.Here,perfect control of both local geometric and propagation phases is realized through field-driven optimization,in which the field distribution is calculated under real boundary conditions.Different from other optimization methods requiring a mass of iterations,the proposed design method requires less than ten iterations to get the efficiency close to the optimal value.Based on the library of shape-optimized catenary structures,centimeter-scale devices can be designed in ten seconds,with the performance improved by ~15%.Furthermore,this method has the ability to extend catenary-like continuous structures to arbitrary polarization,including both linear and elliptical polarizations,which is difficult to achieve with traditional design methods.It provides a way for the development of catenary optics and serves as a potent tool for constructing high-performance optical devices.展开更多
In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized pr...In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized problem extends the objective-constraint problem. It is demonstrated that how adding variables to the scalarized problem, can lead to find conditions for (weakly, properly) Pareto optimal solutions. Applying the obtained necessary and sufficient conditions, two algorithms for generating the Pareto front approximation of bi-objective and three-objective programming problems are designed. These algorithms are easy to implement and can achieve an even approximation of (weakly, properly) Pareto optimal solutions. These algorithms can be generalized for optimization problems with more than three criterion functions, too. The effectiveness and capability of the algorithms are demonstrated in test problems.展开更多
Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks.However,edge computing servers(ECSs)from different operators may not trust each other,and thus t...Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks.However,edge computing servers(ECSs)from different operators may not trust each other,and thus the incentives for collaboration cannot be guaranteed.In this paper,we propose a consortium blockchain enabled collaborative edge computing framework,where users can offload computing tasks to ECSs from different operators.To minimize the total delay of users,we formulate a joint task offloading and resource optimization problem,under the constraint of the computing capability of each ECS.We apply the Tammer decomposition method and heuristic optimization algorithms to obtain the optimal solution.Finally,we propose a reputation based node selection approach to facilitate the consensus process,and also consider a completion time based primary node selection to avoid monopolization of certain edge node and enhance the security of the blockchain.Simulation results validate the effectiveness of the proposed algorithm,and the total delay can be reduced by up to 40%compared with the non-cooperative case.展开更多
基金part of the Program of "Study on Optimization and Supply-side Reliability of Oil Product Supply Chain Logistics System" funded under the National Natural Science Foundation of China, Grant Number 51874325
文摘Oil and gas pipeline networks are a key link in the coordinated development of oil and gas both upstream and downstream.To improve the reliability and safety of the oil and gas pipeline network, inspections are implemented to minimize the risk of leakage, spill and theft, as well as documenting actual incidents. In recent years, unmanned aerial vehicles have been recognized as a promising option for inspection due to their high efficiency. However, the integrated optimization of unmanned aerial vehicle inspection for oil and gas pipeline networks, including physical feasibility, the performance of mission, cooperation, real-time implementation and three-dimensional(3-D) space, is a strategic problem due to its large-scale,complexity as well as the need for efficiency. In this work, a novel mixed-integer nonlinear programming model is proposed that takes into account the constraints of the mission scenario and the safety performance of unmanned aerial vehicles. To minimize the total length of the inspection path, the model is solved by a two-stage solution method. Finally, a virtual pipeline network and a practical pipeline network are set as two examples to demonstrate the performance of the optimization schemes. Moreover, compared with the traditional genetic algorithm and simulated annealing algorithm, the self-adaptive genetic simulated annealing algorithm proposed in this paper provides strong stability.
基金Project supported by the Zhejiang Provincial Natural Science Foundation (Grant No.LQ20F020011)the Gansu Provincial Foundation for Distinguished Young Scholars (Grant No.23JRRA766)+1 种基金the National Natural Science Foundation of China (Grant No.62162040)the National Key Research and Development Program of China (Grant No.2020YFB1713600)。
文摘The influence maximization problem aims to select a small set of influential nodes, termed a seed set, to maximize their influence coverage in social networks. Although the methods that are based on a greedy strategy can obtain good accuracy, they come at the cost of enormous computational time, and are therefore not applicable to practical scenarios in large-scale networks. In addition, the centrality heuristic algorithms that are based on network topology can be completed in relatively less time. However, they tend to fail to achieve satisfactory results because of drawbacks such as overlapped influence spread. In this work, we propose a discrete two-stage metaheuristic optimization combining quantum-behaved particle swarm optimization with Lévy flight to identify a set of the most influential spreaders. According to the framework,first, the particles in the population are tasked to conduct an exploration in the global solution space to eventually converge to an acceptable solution through the crossover and replacement operations. Second, the Lévy flight mechanism is used to perform a wandering walk on the optimal candidate solution in the population to exploit the potentially unidentified influential nodes in the network. Experiments on six real-world social networks show that the proposed algorithm achieves more satisfactory results when compared to other well-known algorithms.
基金support from the National Natural Science Foundation of China(22209089,22178187)Natural Science Foundation of Shandong Province(ZR2022QB048,ZR2021MB006)+2 种基金Excellent Youth Science Foundation of Shandong Province(Overseas)(2023HWYQ-089)the Taishan Scholars Program of Shandong Province(tsqn201909091)Open Research Fund of School of Chemistry and Chemical Engineering,Henan Normal University.
文摘Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growth and spontaneous shuttle effect of active species have prohibited their practical implementation.Herein,a double-layered protective film based on zinc-ethylenediamine tetramethylene phosphonic acid(ZEA)artificial film and ZnF2-rich solid electrolyte interphase(SEI)layer has been successfully fabricated on the zinc metal anode via electrode/electrolyte synergistic optimization.The ZEA-based artificial film shows strong affinity for the ZnF2-rich SEI layer,therefore effectively suppressing the SEI breakage and facilitating the construction of double-layered protective film on the zinc metal anode.Such double-layered architecture not only modulates Zn2+flux and suppresses the zinc dendrite growth,but also blocks the direct contact between the metal anode and electrolyte,thus mitigating the corrosion from the active species.When employing optimized metal anodes and electrolytes,the as-developed zinc-(dual)halogen batteries present high areal capacity and satisfactory cycling stability.This work provides a new avenue for developing aqueous zinc-(dual)halogen batteries.
文摘This review article provides a comprehensive analysis of nesting optimization algorithms in the shipbuilding industry,emphasizing their role in improving material utilization,minimizing waste,and enhancing production efficiency.The shipbuilding process involves the complex cutting and arrangement of steel plates,making the optimization of these operations vital for cost-effectiveness and sustainability.Nesting algorithms are broadly classified into four categories:exact,heuristic,metaheuristic,and hybrid.Exact algorithms ensure optimal solutions but are computationally demanding.In contrast,heuristic algorithms deliver quicker results using practical rules,although they may not consistently achieve optimal outcomes.Metaheuristic algorithms combine multiple heuristics to effectively explore solution spaces,striking a balance between solution quality and computational efficiency.Hybrid algorithms integrate the strengths of different approaches to further enhance performance.This review systematically assesses these algorithms using criteria such as material dimensions,part geometry,component layout,and computational efficiency.The findings highlight the significant potential of advanced nesting techniques to improve material utilization,reduce production costs,and promote sustainable practices in shipbuilding.By adopting suitable nesting solutions,shipbuilders can achieve greater efficiency,optimized resource management,and superior overall performance.Future research directions should focus on integrating machine learning and real-time adaptability to further enhance nesting algorithms,paving the way for smarter,more sustainable manufacturing practices in the shipbuilding industry.
基金supported by the State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications)No.IPOC2021ZT10BUPT Excellent Ph.D.Students Foundation(Grant No.CX2023207)the BUPT innovation and entrepreneurship support program No.2024-YC-A188。
文摘Phase-matching quantum-key distribution(PM-QKD)has achieved significant results in various practical applications.However,real-time communication requires dynamic adjustment and optimization of key parameters during communication.In this letter,we predict the PM-QKD parameters using nature-inspired algorithms(NIAs).The results are obtained from an exhaustive traversal algorithm(ETA),which serves as a benchmark.We mainly study the parameter optimization effects of the two NIAs:ant colony optimization(ACO)and the genetic algorithm(GA).The configuration of the inherent parameters of these algorithms in the decoy-state PM-QKD is also discussed.The simulation results indicate that the parameters obtained by the ACO exhibit superior convergence and stability,whereas the GA results are relatively scattered.Nevertheless,more than 97%of the key rates predicted by both algorithms are highly consistent with the optimal key rate.Moreover,the relative error of the key rates remained below 10%.Furthermore,NIAs maintain power consumption below 8 W and require three orders of magnitude less computing time than ETA.
基金supported by the National Key Research and Development Program of China (Grant No. 2023YFB4502500)。
文摘Optimizing frequency configurations for qubits and gates in superconducting quantum chips presents a complex NP-complete challenge,critical for mitigating decoherence and crosstalk.This paper introduces a neural network-based approach,leveraging the network as a surrogate model to predict frequency errors.The method employs a closed-loop Bayesian optimization framework to iteratively refine configurations,guided by the network’s knowledge of nonlinear error mechanisms.By focusing on localized chip windows,the optimization identifies optimal frequency settings that minimize errors.The approach is validated through randomized and cross-entropy benchmarking,showing improved energy calculations when optimizing frequency configurations for a crosstalkaware hardware-efficient ansatz in variational quantum eigensolvers on superconducting quantum chips.
基金partly supported by the National Natural Science Foundation of China(Grant No.52272225).
文摘Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.
文摘Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches.
基金Project supported by the National Natural Science Foundation of China (Grant No. U22B2095)the Civil Aerospace Technology Research Project (Grant No. D010103)。
文摘The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches between the parameters of the received amplitude modulation(AM) signals and the system's linear workspace and demodulation operating points can cause severe distortion in the demodulated signals. To address this, the article proposes a method for determining the operational parameters based on the mean square error(MSE) and total harmonic distortion(THD) assessments and presents strategies for optimizing the system's operational parameters focusing on linear response characteristics(LRC) and linear dynamic range(LDR). Specifically, we employ a method that minimizes the MSE to define the system's linear workspace, thereby ensuring the system has a good LRC while maximizing the LDR. To ensure that the signal always operates within the linear workspace, an appropriate carrier amplitude is set as the demodulation operating point. By calculating the THD at different operating points, the LRC performance within different regions of the linear workspace is evaluated, and corresponding optimization strategies based on the range of signal strengths are proposed. Moreover, to more accurately restore the baseband signal, we establish a mapping relationship between the carrier Rabi frequency and the transmitted power of the probe light, and optimize the slope of the linear demodulation function to reduce the MSE to less than 0.8×10^(-4). Finally, based on these methods for determining the operational parameters, we explore the effects of different laser Rabi frequencies on the system performance, and provide optimization recommendations. This research provides robust support for the design of high-performance Rydberg atom-based AM receivers.
基金Supported by the National Natural Science Foundation of China under Grant No.52271309Natural Science Foundation of Heilongjiang Province of China under Grant No.YQ2022E104.
文摘Blades are important parts of rotating machinery such as marine gas turbines and wind turbines,which are exposed to harsh environments during mechanical operations,including centrifugal loads,aerodynamic forces,or high temperatures.These demanding working conditions considerably influence the dynamic performance of blades.Therefore,because of the challenges posed by blades in complex working environments,in-depth research and optimization are necessary to ensure that blades can operate safely and efficiently,thus guaranteeing the reliability and performance of mechanical systems.Focusing on the vibration analysis of blades in rotating machinery,this paper conducts a comprehensive literature review on the research advancements in vibration modeling and structural optimization of blades under complex operational conditions.First,the paper outlines the development of several modeling theories for rotating blades,including one-dimensional beam theory,two-dimensional plate-shell theory,and three-dimensional solid theory.Second,the research progress in the vibrational analysis of blades under aerodynamic loads,thermal environments,and crack factors is separately discussed.Finally,the developments in rotating blade structural optimization are presented from material optimization and shape optimization perspectives.The methodology and theory of analyzing and optimizing blade vibration characteristics under multifactorial operating conditions are comprehensively outlined,aiming to assist future researchers in proposing more effective and practical approaches for the vibration analysis and optimization of blades.
文摘Electron beam fluorescence technology is an advanced non-contact measurement in rarefied flow fields,and the fluorescence signal intensity is positively correlated with the electron beam current.The ion bombardment secondary emission electron gun is suitable for the technology.To enhance the beam current,COMSOL simulations and analyses were conducted to examine plasma density distribution in the discharge chamber under the effects of various conditions and the electric field distribution between the cathode and the spacer gap.The anode shape and discharge pressure conditions were optimized to increase plasma density.Additionally,an improved spacer structure was designed with the dual purpose of enhancing the electric field distribution between the cathode-spacer gaps and improving vacuum differential effects.This design modification aims to increase the pass rate of secondary electrons.Both simulation and experimental results demonstrated that the performance of the optimized electron gun was effectively enhanced.When the electrode voltage remains constant and the discharge gas pressure is adjusted to around 8 Pa,the maximum beam current was increased from 0.9 mA to 1.6 mA.
基金supported by the National Key Research and Development Program of China(No.2022YFC2903902)the National Natural Science Foundation of China(Nos.52204080and 52174070)the Fundamental Research Funds for the Central Universities of China(No.2023GFYD17)。
文摘Accurately predicting the powder factor during blasting is essential for sustainable production planning in low-grade mines.This research presents a method for predicting powder factor based on the heterogeneity of rock mass rating(RMR).Considering a low-grade metal mine as an example,this study exploited geostatistical methods to obtain independent RMR for each block unit.A three-dimensional spatial distribution model for the powder factor was developed on the basis of the relationships between the RMR and the powder factor.Subsequently,models for blasting cost and mining value were built and employed to optimize the open-pit limit.The multi-variable model based on the RMR performed well in predicting the powder factor,achieving a correlation coefficient of 0.88(root mean square error of 4.3)and considerably outperforming the uniaxial compressive strength model.After model optimization,the mean size and standard deviation of the fragments in the blast pile decreased by 8.5%and 35.1%,respectively,whereas the boulder yield and its standard deviation decreased by 33.3%and 58.8%,respectively.Additionally,optimizing the open-pit limit using this method reduced the amount of rock,increased the amount of ore,and lowered blasting costs,thereby enhancing the economic efficiency of the mine.This study provides valuable insights for blasting design and mining decisions,demonstrating the advantages and potential applications of powder factor prediction based on the heterogeneity of rock mass quality.
基金funded by the National Natural Science Foundation of China(12102487)Basic and Applied Basic Research Foundation of Guangdong Province,China(2023A1515012339)+1 种基金Shenzhen Science and Technology Program(ZDSYS20210623091808026)the Discovery Grant(RGPIN-2024-06290)of the Natural Sciences and Engineering Research Council of Canada。
文摘This paper proposed a new libration decoupling analytical speed function(LD-ASF)in lieu of the classic analytical speed function to control the climber's speed along a partial space elevator to improve libration stability in cargo transportation.The LD-ASF is further optimized for payload transportation efficiency by a novel coordinate game theory to balance competing control objectives among payload transport speed,stable end body's libration,and overall control input via model predictive control.The transfer period is divided into several sections to reduce computational burden.The validity and efficacy of the proposed LD-ASF and coordinate game-based model predictive control are demonstrated by computer simulation.Numerical results reveal that the optimized LD-ASF results in higher transportation speed,stable end body's libration,lower thrust fuel consumption,and more flexible optimization space than the classic analytical speed function.
基金partially supported by the National Science Foundation of China(Grants 71822105 and 91746210)。
文摘In short-term operation of natural gas network,the impact of demand uncertainty is not negligible.To address this issue we propose a two-stage robust model for power cost minimization problem in gunbarrel natural gas networks.The demands between pipelines and compressor stations are uncertain with a budget parameter,since it is unlikely that all the uncertain demands reach the maximal deviation simultaneously.During solving the two-stage robust model we encounter a bilevel problem which is challenging to solve.We formulate it as a multi-dimensional dynamic programming problem and propose approximate dynamic programming methods to accelerate the calculation.Numerical results based on real network in China show that we obtain a speed gain of 7 times faster in average without compromising optimality compared with original dynamic programming algorithm.Numerical results also verify the advantage of robust model compared with deterministic model when facing uncertainties.These findings offer short-term operation methods for gunbarrel natural gas network management to handle with uncertainties.
基金support of The National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201)。
文摘Since the connection of small-scale wind farms to distribution networks,power grid voltage stability has been reduced with increasing wind penetration in recent years,owing to the variable reactive power consumption of wind generators.In this study,a two-stage reactive power optimization method based on the alternating direction method of multipliers(ADMM)algorithm is proposed for achieving optimal reactive power dispatch in wind farm-integrated distribution systems.Unlike existing optimal reactive power control methods,the proposed method enables distributed reactive power flow optimization with a two-stage optimization structure.Furthermore,under the partition concept,the consensus protocol is not needed to solve the optimization problems.In this method,the influence of the wake effect of each wind turbine is also considered in the control design.Simulation results for a mid-voltage distribution system based on MATLAB verified the effectiveness of the proposed method.
基金supported by the National Key R&D Program of China under Grant 2020YFB1807900the National Natural Science Foundation of China (NSFC) under Grant 61931005Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Center。
文摘Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput.
基金supported by the National Natural Science Foundation of China(Grants 52304001,52227804)State Key Laboratory of Petroleum Resources and Engineering,China University of Petroleum,Beijing(No.PRE/open-2310)。
文摘To address the two critical issues of evaluating the necessity of implementing cooling techniques and achieving real-time temperature control of drilling fluids underground in the current drilling fluid cooling technology,we first established a temperature and pressure coupled downhole heat transfer model,which can be used in both water-based and oil-based drilling fluid.Then,fourteen factors,which could affect wellbore temperature,were analyzed.Based on the standard deviation of the downhole temperature corresponding to each influencing factor,the influence of each factor was quantified.The influencing factors that can be used to guide the drilling fluid's cooling technology were drilling fluid thermal conductivity,drilling fluid heat capacity,drilling fluid density,drill strings rotation speed,pump rate,viscosity,ROP,and injection temperature.The nondominated sorting genetic algorithm was used to optimize these six parameters,but the optimization process took 182 min.Combining these eight parameters'influence rules with the nondominated sorting genetic algorithm can reduce the optimization time to 108 s.Theoretically,the downhole temperature has been demonstrated to increase with the inlet temperature increasing linearly under quasi-steady states.Combining this law and PID,the downhole temperature can be controlled,which can reduce the energy for cooling the surface drilling fluid and can ensure the downhole temperature reaches the set value as soon as possible.
基金financial supports from the National Natural Science Foundation of China (No.62175242,U20A20217,61975210,and 62305345)China Postdoctoral Science Foundation (2021T140670)。
文摘Catenary optics enables metasurfaces with higher efficiency and wider bandwidth,and is highly anticipated in the imaging system,super-resolution lithography,and broadband absorbers.However,the periodic boundary approximation without considering aperiodic electromagnetic crosstalk poses challenges for catenary optical devices to reach their performance limits.Here,perfect control of both local geometric and propagation phases is realized through field-driven optimization,in which the field distribution is calculated under real boundary conditions.Different from other optimization methods requiring a mass of iterations,the proposed design method requires less than ten iterations to get the efficiency close to the optimal value.Based on the library of shape-optimized catenary structures,centimeter-scale devices can be designed in ten seconds,with the performance improved by ~15%.Furthermore,this method has the ability to extend catenary-like continuous structures to arbitrary polarization,including both linear and elliptical polarizations,which is difficult to achieve with traditional design methods.It provides a way for the development of catenary optics and serves as a potent tool for constructing high-performance optical devices.
文摘In this article, a novel scalarization technique, called the improved objective-constraint approach, is introduced to find efficient solutions of a given multiobjective programming problem. The presented scalarized problem extends the objective-constraint problem. It is demonstrated that how adding variables to the scalarized problem, can lead to find conditions for (weakly, properly) Pareto optimal solutions. Applying the obtained necessary and sufficient conditions, two algorithms for generating the Pareto front approximation of bi-objective and three-objective programming problems are designed. These algorithms are easy to implement and can achieve an even approximation of (weakly, properly) Pareto optimal solutions. These algorithms can be generalized for optimization problems with more than three criterion functions, too. The effectiveness and capability of the algorithms are demonstrated in test problems.
基金supported in part by the National Key R&D Program of China under Grant 2020YFB1005900the National Natural Science Foundation of China under Grant 62001220+3 种基金the Jiangsu Provincial Key Research and Development Program under Grants BE2022068the Natural Science Foundation of Jiangsu Province under Grants BK20200440the Future Network Scientific Research Fund Project FNSRFP-2021-YB-03the Young Elite Scientist Sponsorship Program,China Association for Science and Technology.
文摘Collaborative edge computing is a promising direction to handle the computation intensive tasks in B5G wireless networks.However,edge computing servers(ECSs)from different operators may not trust each other,and thus the incentives for collaboration cannot be guaranteed.In this paper,we propose a consortium blockchain enabled collaborative edge computing framework,where users can offload computing tasks to ECSs from different operators.To minimize the total delay of users,we formulate a joint task offloading and resource optimization problem,under the constraint of the computing capability of each ECS.We apply the Tammer decomposition method and heuristic optimization algorithms to obtain the optimal solution.Finally,we propose a reputation based node selection approach to facilitate the consensus process,and also consider a completion time based primary node selection to avoid monopolization of certain edge node and enhance the security of the blockchain.Simulation results validate the effectiveness of the proposed algorithm,and the total delay can be reduced by up to 40%compared with the non-cooperative case.