Missiles provide long-range precision strike capabilities and have become a cornerstone of modern warfare.The contrail clouds formed by missile during their active flight phase present significant chal-lenges to high-...Missiles provide long-range precision strike capabilities and have become a cornerstone of modern warfare.The contrail clouds formed by missile during their active flight phase present significant chal-lenges to high-altitude environmental observation and target detection and tracking.Existing studies primarily focus on specific airspace regions,leaving critical gaps in understanding the effects of long dispersion times,wide altitude ranges,and variable atmospheric conditions on missile contrail clouds.To address these gaps,this article develops a numerical method based on the Lagrangian random walk model,which incorporates various velocity variation terms,including particle velocity caused by the difference of wind field,by the thermal motion of local gas molecules and by random collisions between contrail cloud particles to capture the influence of environmental wind fields,atmospheric conditions,and particle concentrations on the motion of contrail cloud particles.A general coordinate system aligned with the missile's flight trajectory is employed to represent particle distribution characteristics.The proposed method is in good agreement with the conducted experiments as well as with the available numerical simulations.The results demonstrate that the proposed model effectively simulates the dispersion state of contrail clouds,accurately reflecting the impact of large-scale wind field variations and altitude changes with high computational efficiency.Additionally,simulation results indicate that the increased distance between gas molecules in rarefied environments facilitates enhanced particle dispersion,while larger particles exhibit a faster dispersion rate due to their greater mass.展开更多
Remaining useful life(RUL) estimation based on condition monitoring data is central to condition based maintenance(CBM). In the current methods about the Wiener process based RUL estimation, the randomness of the fail...Remaining useful life(RUL) estimation based on condition monitoring data is central to condition based maintenance(CBM). In the current methods about the Wiener process based RUL estimation, the randomness of the failure threshold has not been studied thoroughly. In this work, by using the truncated normal distribution to model random failure threshold(RFT), an analytical and closed-form RUL distribution based on the current observed data was derived considering the posterior distribution of the drift parameter. Then, the Bayesian method was used to update the prior estimation of failure threshold. To solve the uncertainty of the censored in situ data of failure threshold, the expectation maximization(EM) algorithm is used to calculate the posteriori estimation of failure threshold. Numerical examples show that considering the randomness of the failure threshold and updating the prior information of RFT could improve the accuracy of real time RUL estimation.展开更多
Due to the heavy congestion in HF bands, HF radars are restricted to operating within narrow frequency bands. To improve the system bandwidth and avoid heavy interference bands, a quasi-random step frequency signal wi...Due to the heavy congestion in HF bands, HF radars are restricted to operating within narrow frequency bands. To improve the system bandwidth and avoid heavy interference bands, a quasi-random step frequency signal with discontinuous bands is presented. A novel two-dimensional signal processing scheme for this signal is proposed on the basis of delicate signal analysis. Simulation results demonstrate that the scheme could successfully realize the resolutions by decoupling the range-Doppler ambiguity, and effectively suppress the maximal sidelobe. Moreover, the scheme is simple and has good numerical stability.展开更多
文摘Missiles provide long-range precision strike capabilities and have become a cornerstone of modern warfare.The contrail clouds formed by missile during their active flight phase present significant chal-lenges to high-altitude environmental observation and target detection and tracking.Existing studies primarily focus on specific airspace regions,leaving critical gaps in understanding the effects of long dispersion times,wide altitude ranges,and variable atmospheric conditions on missile contrail clouds.To address these gaps,this article develops a numerical method based on the Lagrangian random walk model,which incorporates various velocity variation terms,including particle velocity caused by the difference of wind field,by the thermal motion of local gas molecules and by random collisions between contrail cloud particles to capture the influence of environmental wind fields,atmospheric conditions,and particle concentrations on the motion of contrail cloud particles.A general coordinate system aligned with the missile's flight trajectory is employed to represent particle distribution characteristics.The proposed method is in good agreement with the conducted experiments as well as with the available numerical simulations.The results demonstrate that the proposed model effectively simulates the dispersion state of contrail clouds,accurately reflecting the impact of large-scale wind field variations and altitude changes with high computational efficiency.Additionally,simulation results indicate that the increased distance between gas molecules in rarefied environments facilitates enhanced particle dispersion,while larger particles exhibit a faster dispersion rate due to their greater mass.
基金Projects(51475462,61174030,61473094,61374126)supported by the National Natural Science Foundation of China
文摘Remaining useful life(RUL) estimation based on condition monitoring data is central to condition based maintenance(CBM). In the current methods about the Wiener process based RUL estimation, the randomness of the failure threshold has not been studied thoroughly. In this work, by using the truncated normal distribution to model random failure threshold(RFT), an analytical and closed-form RUL distribution based on the current observed data was derived considering the posterior distribution of the drift parameter. Then, the Bayesian method was used to update the prior estimation of failure threshold. To solve the uncertainty of the censored in situ data of failure threshold, the expectation maximization(EM) algorithm is used to calculate the posteriori estimation of failure threshold. Numerical examples show that considering the randomness of the failure threshold and updating the prior information of RFT could improve the accuracy of real time RUL estimation.
文摘Due to the heavy congestion in HF bands, HF radars are restricted to operating within narrow frequency bands. To improve the system bandwidth and avoid heavy interference bands, a quasi-random step frequency signal with discontinuous bands is presented. A novel two-dimensional signal processing scheme for this signal is proposed on the basis of delicate signal analysis. Simulation results demonstrate that the scheme could successfully realize the resolutions by decoupling the range-Doppler ambiguity, and effectively suppress the maximal sidelobe. Moreover, the scheme is simple and has good numerical stability.