Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the hea...Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the health conditions of civil structures.The deep learning algorithm that works on a multiple layer neuralnetwork model termed as deep autoencoder is proposed to learnthe relationship between the modal information and structural stiff-ness parameters. This is achieved via dimension reduction of themodal information feature and a non-linear regression against thestructural stiffness parameters. Numerical tests on a symmetri-cal steel frame model are conducted to generate the data for thetraining and validation, and to demonstrate the efficiency of theproposed approach for vibration based structural damage detec-tion.展开更多
协议转换通常用于解决不同协议之间的数据交互问题,它的本质是寻找不同协议字段之间的映射关系。传统的协议转换方法存在以下缺点:转换大多是在特定协议的基础上设计的,因而这些转换是静态的,灵活性较差,不适用于多协议转换的场景;一旦...协议转换通常用于解决不同协议之间的数据交互问题,它的本质是寻找不同协议字段之间的映射关系。传统的协议转换方法存在以下缺点:转换大多是在特定协议的基础上设计的,因而这些转换是静态的,灵活性较差,不适用于多协议转换的场景;一旦协议发生改变,就需要再次分析协议的结构和字段语义以重新构建字段之间的映射关系,从而产生指数级的工作量,降低了协议转换的效率。因此,提出基于语义相似度的通用协议转换方法,旨在通过智能的方法发掘字段间的映射关系,进而提高协议转换的效率。首先,通过BERT(Bidirectional Encoder Representations from Transformers)模型分类协议字段,并排除“不应该”存在映射关系的字段;其次,通过计算字段之间的语义相似度,推理字段之间的映射关系,进而构建字段映射表;最后,提出基于语义相似度的通用协议转换框架,并定义相关协议以进行验证。仿真实验结果表明:所提方法的字段分类精准率达到了94.44%;映射关系识别精准率达到了90.70%,相较于基于知识抽取的方法提高了13.93%。以上结果验证了所提方法的有可行性,该方法可以快速识别不同协议字段之间的映射关系,适用于无人协同中多协议转换的场景。展开更多
目前在高校C语言编程课程中,使用客观评价的题目难度考验学生的学习情况是非常重要的手段。目前大部分难度评估方法都针对特有科目和特有题型,而对中文编程题目的难度评估存在不足。因此,提出一种融合题目文本和知识点标签的基于BERT(Bi...目前在高校C语言编程课程中,使用客观评价的题目难度考验学生的学习情况是非常重要的手段。目前大部分难度评估方法都针对特有科目和特有题型,而对中文编程题目的难度评估存在不足。因此,提出一种融合题目文本和知识点标签的基于BERT(Bidirectional Encoder Representations from Transformers)和双向长短时记忆(Bi-LSTM)模型的C语言题目难度预测模型FTKB-BiLSTM(Fusion of Title and Knowledge based on BERT and Bi-LSTM)。首先,利用BERT的中文预训练模型获得题目文本和知识点的词向量;其次,融合模块将融合后的信息通过BERT处理得到文本的信息表示,并输入Bi-LSTM模型中学习其中的序列信息,提取更丰富的特征;最后,把经Bi-LSTM模型得到的特征表示通过全连接层并经过Softmax函数处理得到题目难度分类结果。在Leetcode中文数据集和ZjgsuOJ平台数据集上的实验结果表明,相较于XLNet等主流的深度学习模型,所提模型的准确率更优,具有较强的分类能力。展开更多
文摘Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the health conditions of civil structures.The deep learning algorithm that works on a multiple layer neuralnetwork model termed as deep autoencoder is proposed to learnthe relationship between the modal information and structural stiff-ness parameters. This is achieved via dimension reduction of themodal information feature and a non-linear regression against thestructural stiffness parameters. Numerical tests on a symmetri-cal steel frame model are conducted to generate the data for thetraining and validation, and to demonstrate the efficiency of theproposed approach for vibration based structural damage detec-tion.
文摘协议转换通常用于解决不同协议之间的数据交互问题,它的本质是寻找不同协议字段之间的映射关系。传统的协议转换方法存在以下缺点:转换大多是在特定协议的基础上设计的,因而这些转换是静态的,灵活性较差,不适用于多协议转换的场景;一旦协议发生改变,就需要再次分析协议的结构和字段语义以重新构建字段之间的映射关系,从而产生指数级的工作量,降低了协议转换的效率。因此,提出基于语义相似度的通用协议转换方法,旨在通过智能的方法发掘字段间的映射关系,进而提高协议转换的效率。首先,通过BERT(Bidirectional Encoder Representations from Transformers)模型分类协议字段,并排除“不应该”存在映射关系的字段;其次,通过计算字段之间的语义相似度,推理字段之间的映射关系,进而构建字段映射表;最后,提出基于语义相似度的通用协议转换框架,并定义相关协议以进行验证。仿真实验结果表明:所提方法的字段分类精准率达到了94.44%;映射关系识别精准率达到了90.70%,相较于基于知识抽取的方法提高了13.93%。以上结果验证了所提方法的有可行性,该方法可以快速识别不同协议字段之间的映射关系,适用于无人协同中多协议转换的场景。
文摘目前在高校C语言编程课程中,使用客观评价的题目难度考验学生的学习情况是非常重要的手段。目前大部分难度评估方法都针对特有科目和特有题型,而对中文编程题目的难度评估存在不足。因此,提出一种融合题目文本和知识点标签的基于BERT(Bidirectional Encoder Representations from Transformers)和双向长短时记忆(Bi-LSTM)模型的C语言题目难度预测模型FTKB-BiLSTM(Fusion of Title and Knowledge based on BERT and Bi-LSTM)。首先,利用BERT的中文预训练模型获得题目文本和知识点的词向量;其次,融合模块将融合后的信息通过BERT处理得到文本的信息表示,并输入Bi-LSTM模型中学习其中的序列信息,提取更丰富的特征;最后,把经Bi-LSTM模型得到的特征表示通过全连接层并经过Softmax函数处理得到题目难度分类结果。在Leetcode中文数据集和ZjgsuOJ平台数据集上的实验结果表明,相较于XLNet等主流的深度学习模型,所提模型的准确率更优,具有较强的分类能力。