Two(3+1)-dimensional shallow water wave equations are studied by using residual symmetry and the consistent Riccati expansion(CRE) method. Through localization of residual symmetries, symmetry reduction solutions of t...Two(3+1)-dimensional shallow water wave equations are studied by using residual symmetry and the consistent Riccati expansion(CRE) method. Through localization of residual symmetries, symmetry reduction solutions of the two equations are obtained. The CRE method is applied to the two equations to obtain new B?cklund transformations from which a type of interesting interaction solution between solitons and periodic waves is generated.展开更多
In this paper,the Cauchy problem for the two layer viscous shallow water equations is investigated with third-order surface-tension terms and a low regularity assumption on the initial data.The global existence and un...In this paper,the Cauchy problem for the two layer viscous shallow water equations is investigated with third-order surface-tension terms and a low regularity assumption on the initial data.The global existence and uniqueness of the strong solution in a hybrid Besov space are proved by using the Littlewood-Paley decomposition and Friedrichs'regularization method.展开更多
We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide soli...We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide solitons, breathers,and hybrid solutions of them. Four cases of a crucial φ(y), which is an arbitrary real continuous function appeared in f of bilinear form, are selected by using Jacobi elliptic functions, which yield a periodic solution and three kinds of doubly localized dormion-type solution. The first order Jacobi-type solution travels parallelly along the x axis with the velocity(3k12+ α, 0) on(x, y)-plane. If φ(y) = sn(y, 3/10), it is a periodic solution. If φ(y) = cn(y, 1), it is a dormion-type-Ⅰ solutions which has a maximum(3/4)k1p1 and a minimum-(3/4)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1), we get a dormion-type-Ⅱ solution(26) which has only one extreme value-(3/2)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1/2)/(1 + y2), we get a dormion-type-Ⅲ solution(21) which shows very strong doubly localized feature on(x, y) plane. Moreover, several interesting patterns of the mixture of periodic and localized solutions are also given in graphic way.展开更多
The periodic initial value problem of a fifth-order shallow water equation t u 2 x t u + 3 x u 5 x u + 3u x u 2 x u 2 x u u 3 x u = 0 is shown to be globally well-posed in Sobolev spaces˙ H s (T) for s 〉 2/3 by ...The periodic initial value problem of a fifth-order shallow water equation t u 2 x t u + 3 x u 5 x u + 3u x u 2 x u 2 x u u 3 x u = 0 is shown to be globally well-posed in Sobolev spaces˙ H s (T) for s 〉 2/3 by I-method. For this equation lacks scaling invariance, we first reconsider the local result and pay special attention to the relationship between the lifespan of the local solution and the initial data, and then prove the almost conservation law, and finally obtain the global well-posedness by an iteration process.展开更多
Recently, a new (2+1)-dimensional shallow water wave system, the (2+1)-dlmenslonal displacement shallow water wave system (2DDSWWS), was constructed by applying the variational principle of the analytic mechan...Recently, a new (2+1)-dimensional shallow water wave system, the (2+1)-dlmenslonal displacement shallow water wave system (2DDSWWS), was constructed by applying the variational principle of the analytic mechanics in the Lagrange coordinates. The disadvantage is that fluid viscidity is not considered in the 2DDSWWS, which is the same as the famous Kadomtsev-Petviashvili equation and Korteweg-de Vries equation. Applying dimensional analysis, we modify the 2DDSWWS and add the term related to the fluid viscidity to the 2DDSWWS. The approximate similarity solutions of the modified 2DDSWWS (M2DDSWWS) is studied and four similarity solutions are obtained. For the perfect fluids, the coefficient of kinematic viscosity is zero, then the M2DDSWWS will degenerate to the 2DDSWWS.展开更多
Temporal fluctuations in vertical thermocline structure and depth span(on a time scale of 30 to 40 min)are shown to affect the arrival angle,and focusing ofmeasured broadband(22–28 kHz)non-surface-interacting acousti...Temporal fluctuations in vertical thermocline structure and depth span(on a time scale of 30 to 40 min)are shown to affect the arrival angle,and focusing ofmeasured broadband(22–28 kHz)non-surface-interacting acoustic signals at a depth of^100m.Measurements were taken in the PacificMissile Range Facility near Kauai island,Hawaii,for a source-receiver range of 1.0 km.The arrival time and angular spread of acoustic beams are obtained for measured signals using a plane wave beamformer with a-prior gaussian weighting.The weighting process reduces ambiguity in angularmeasurements due to spatial aliasing from a vertical arraywith element spacing d much greater than half the acoustic wavelength(λa/2)of the highest frequency in the broadband signal.Over two full periods of thermocline oscillation,2 times of high and 2 times of lowisotherm depth are selected to show fluctuations in angular beam spreading,focusing,and the robustness of the weighted beamformer routine.To benchmark the performance of the weighted beamformer,a twodimensional(2D)Parabolic Equation(PE)model calculates the angular signal spread and focusing using parameters to satisfy spatial sampling requirements for broadband beamforming.In the absence of spatial aliasing,beamforming the output of the 2D PE can be conducted without weighting.Comparison of measured and modeled results shows less than a degree of difference in the angular beam spread of direct,bottom reflected,and refracted paths.It is shown that a vertical array with d﹥﹥(λa/2)and gaussian weighting can resolve changes in angular spread and beam focusing as a function of vertical isotherm displacement.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11975156 and 12175148)。
文摘Two(3+1)-dimensional shallow water wave equations are studied by using residual symmetry and the consistent Riccati expansion(CRE) method. Through localization of residual symmetries, symmetry reduction solutions of the two equations are obtained. The CRE method is applied to the two equations to obtain new B?cklund transformations from which a type of interesting interaction solution between solitons and periodic waves is generated.
基金the NSFC(11571046,11671225)the ISF-NSFC joint research program NSFC(11761141008)the BJNSF(1182004)。
文摘In this paper,the Cauchy problem for the two layer viscous shallow water equations is investigated with third-order surface-tension terms and a low regularity assumption on the initial data.The global existence and uniqueness of the strong solution in a hybrid Besov space are proved by using the Littlewood-Paley decomposition and Friedrichs'regularization method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11671219 and 11871446)
文摘We give the bilinear form and n-soliton solutions of a(2+1)-dimensional [(2+1)-D] extended shallow water wave(eSWW) equation associated with two functions v and r by using Hirota bilinear method. We provide solitons, breathers,and hybrid solutions of them. Four cases of a crucial φ(y), which is an arbitrary real continuous function appeared in f of bilinear form, are selected by using Jacobi elliptic functions, which yield a periodic solution and three kinds of doubly localized dormion-type solution. The first order Jacobi-type solution travels parallelly along the x axis with the velocity(3k12+ α, 0) on(x, y)-plane. If φ(y) = sn(y, 3/10), it is a periodic solution. If φ(y) = cn(y, 1), it is a dormion-type-Ⅰ solutions which has a maximum(3/4)k1p1 and a minimum-(3/4)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1), we get a dormion-type-Ⅱ solution(26) which has only one extreme value-(3/2)k1p1. The width of the contour line is ln■. If φ(y) = sn(y, 1/2)/(1 + y2), we get a dormion-type-Ⅲ solution(21) which shows very strong doubly localized feature on(x, y) plane. Moreover, several interesting patterns of the mixture of periodic and localized solutions are also given in graphic way.
基金supported by NSFC (10771074)NSFC-NSAF(10976026)+1 种基金Yang was partially supported by NSFC (10801055 10901057)
文摘The periodic initial value problem of a fifth-order shallow water equation t u 2 x t u + 3 x u 5 x u + 3u x u 2 x u 2 x u u 3 x u = 0 is shown to be globally well-posed in Sobolev spaces˙ H s (T) for s 〉 2/3 by I-method. For this equation lacks scaling invariance, we first reconsider the local result and pay special attention to the relationship between the lifespan of the local solution and the initial data, and then prove the almost conservation law, and finally obtain the global well-posedness by an iteration process.
基金Project supported by the Natural Science Foundation of Guangdong Province of China (Grant No.10452840301004616)the National Natural Science Foundation of China (Grant No.61001018)the Scientific Research Foundation for the Doctors of University of Electronic Science and Technology of China Zhongshan Institute (Grant No.408YKQ09)
文摘Recently, a new (2+1)-dimensional shallow water wave system, the (2+1)-dlmenslonal displacement shallow water wave system (2DDSWWS), was constructed by applying the variational principle of the analytic mechanics in the Lagrange coordinates. The disadvantage is that fluid viscidity is not considered in the 2DDSWWS, which is the same as the famous Kadomtsev-Petviashvili equation and Korteweg-de Vries equation. Applying dimensional analysis, we modify the 2DDSWWS and add the term related to the fluid viscidity to the 2DDSWWS. The approximate similarity solutions of the modified 2DDSWWS (M2DDSWWS) is studied and four similarity solutions are obtained. For the perfect fluids, the coefficient of kinematic viscosity is zero, then the M2DDSWWS will degenerate to the 2DDSWWS.
基金supported by the Office of Naval Research(ONR)Code 322OA [N00014-13-1-0306]
文摘Temporal fluctuations in vertical thermocline structure and depth span(on a time scale of 30 to 40 min)are shown to affect the arrival angle,and focusing ofmeasured broadband(22–28 kHz)non-surface-interacting acoustic signals at a depth of^100m.Measurements were taken in the PacificMissile Range Facility near Kauai island,Hawaii,for a source-receiver range of 1.0 km.The arrival time and angular spread of acoustic beams are obtained for measured signals using a plane wave beamformer with a-prior gaussian weighting.The weighting process reduces ambiguity in angularmeasurements due to spatial aliasing from a vertical arraywith element spacing d much greater than half the acoustic wavelength(λa/2)of the highest frequency in the broadband signal.Over two full periods of thermocline oscillation,2 times of high and 2 times of lowisotherm depth are selected to show fluctuations in angular beam spreading,focusing,and the robustness of the weighted beamformer routine.To benchmark the performance of the weighted beamformer,a twodimensional(2D)Parabolic Equation(PE)model calculates the angular signal spread and focusing using parameters to satisfy spatial sampling requirements for broadband beamforming.In the absence of spatial aliasing,beamforming the output of the 2D PE can be conducted without weighting.Comparison of measured and modeled results shows less than a degree of difference in the angular beam spread of direct,bottom reflected,and refracted paths.It is shown that a vertical array with d﹥﹥(λa/2)and gaussian weighting can resolve changes in angular spread and beam focusing as a function of vertical isotherm displacement.