Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the ...Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.展开更多
Self-diffraction appears when the strong laser goes through two-dimensional material suspension,and this spatial self-phase modulation(SPPM)phenomenon can be used to measure nonlinear optical parameters and achieve op...Self-diffraction appears when the strong laser goes through two-dimensional material suspension,and this spatial self-phase modulation(SPPM)phenomenon can be used to measure nonlinear optical parameters and achieve optical switch.At present,the mechanism of SPPM is still ambiguous.The debate mainly focuses on whether the phenomenon is caused by the nonlinear refractive index of the two-dimensional material or the thermal effect of the laser.The lack of theory limits the dimension of the phase modulation to the radius of the diffraction ring and the vertical imbalance.Therefore,it is urgent to establish a unified and universal SSPM theoretical system of two-dimensional material.展开更多
To study the energy storage and dissipation characteristics of deep rock under two-dimensional compression with constant confining pressure,the single cyclic loading-unloading two-dimensional compression tests were pe...To study the energy storage and dissipation characteristics of deep rock under two-dimensional compression with constant confining pressure,the single cyclic loading-unloading two-dimensional compression tests were performed on granite specimens with two height-to-width(H/W)ratios under five confining pressures.Three energy density parameters(input energy density,elastic energy density and dissipated energy density)in the axial and lateral directions of granite specimens under different confining pressures were calculated using the area integral method.The experimental results show that,for the specimens with a specific H/W ratio,these three energy density parameters in the axial and lateral directions increase nonlinearly with the confining pressure as quadratic polynomial functions.Under constant confining pressure compression,the linear energy storage law of granite specimens in the axial and lateral directions was founded.Using the linear energy storage law in different directions,the elastic energy density in various directions(axial elastic energy density,lateral elastic energy density and total elastic energy density)of granite under any specific confining pressures can be calculated.When the H/W ratio varies from 1:1 to 2:1,the lateral compression energy storage coefficient increases and the corresponding axial compression energy storage coefficient decreases,while the total compression energy storage coefficient is almost independent of the H/W ratio.展开更多
We propose the quadratic constrained formulas for the design of linear phase cosine modulated paraunitary filter banks given in references . Using these formulae, we can, directly, optimize the prototype filter coeff...We propose the quadratic constrained formulas for the design of linear phase cosine modulated paraunitary filter banks given in references . Using these formulae, we can, directly, optimize the prototype filter coefficients in a quadratic form. A design example is also given to demonstrate these formulae in this paper.展开更多
随着数字射频存储器(digital ratio frequency memory,DRFM)的成熟发展与广泛应用,基于DRFM的相干转发干扰成为当前雷达干扰技术的主流。相干转发干扰具有转发效率高、相干性强等突出优势,并且在数字域的处理算法灵活高效,能够产生复杂...随着数字射频存储器(digital ratio frequency memory,DRFM)的成熟发展与广泛应用,基于DRFM的相干转发干扰成为当前雷达干扰技术的主流。相干转发干扰具有转发效率高、相干性强等突出优势,并且在数字域的处理算法灵活高效,能够产生复杂多样的干扰效果。但经过大量实践发现,当需要产生大范围连片干扰效果时,若干扰机采用密集转发,不但使DRFM运算量急剧增加,而且会破坏恒模约束,导致干扰机功放效率严重下降。基于该情况,本文提出了线性调频(linear frequency modulation,LFM)雷达信号的拉伸变换干扰方法:在数字域对雷达信号的脉宽、带宽分别压缩、展宽,即拉伸变换,再将其辐射至雷达接收机。拉伸信号经匹配滤波处理后,会呈现大范围连片相干干扰效果,干扰效果受拉伸变换因子影响,灵活可调,且拉伸变换干扰满足恒模约束。展开更多
针对间歇采样转发干扰产生的假目标和目标高速运动产生的多普勒频移导致雷达脉压性能急剧下降的问题,提出一种高多普勒容限的线性调频离散相位编码(linear frequency modulation-discrete phase coding,LFM-DPC)复合调制相干波形集设计...针对间歇采样转发干扰产生的假目标和目标高速运动产生的多普勒频移导致雷达脉压性能急剧下降的问题,提出一种高多普勒容限的线性调频离散相位编码(linear frequency modulation-discrete phase coding,LFM-DPC)复合调制相干波形集设计方法。在一定多普勒频移范围内,以最小化未转发信号自模糊函数旁瓣能量以及未转发信号与转发信号互模糊函数能量建立优化模型,并设计一种基于KKT(Karush-Kuhn-Tucker)最优性条件的迭代算法对模型求解。仿真实验表明,相比于遗传算法和单一调制的LFM和DPC信号,基于KKT最优性条件的交替迭代优化算法优化的LFM-DPC波形集有更好的抗间歇采样转发干扰性能。展开更多
With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With ...With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With this capability, ROSAR has extensive potential applications, such as self-navigation and self-landing. Moreover, it has many advantages if combined with the frequency modulated continuous wave (FMCW) technology. A novel geometric configuration and an imaging algorithm for helicopter-borne FMCW-ROSAR are proposed. Firstly, by per- forming the equivalent phase center principle, the separated trans- mitting and receiving antenna system is equalized to the case of system configuration with antenna for both transmitting and receiving signals. Based on this, the accurate two-dimensional spectrum is obtained and the Doppler frequency shift effect in- duced by the continuous motion of the platform during the long pulse duration is compensated. Next, the impacts of the velocity approximation error on the imaging algorithm are analyzed in de- tail, and the system parameters selection and resolution analysis are presented. The well-focused SAR image is then obtained by using the improved Omega-K algorithm incorporating the accurate compensation method for the velocity approximation error. FJnally, correctness of the analysis and effectiveness of the proposed al- gorithm are demonstrated through simulation results.展开更多
It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the ...It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the linear control is realized by the dynamic inverse nonlinear controlling theory and the three-time-scale separation method.The control ability and the simulation results are also tested and verified.The results show that the output responses of system track the expected curve well and the error is controlled in a given margin.The maximum correction is about±314 m in the lengthwise direction and±1 212 m in the crosswise direction from the moment of 5 s to the drop-point time when the angle of fire is 55°.Thus,based on the dynamic inverse control of feedback linearization,the trajectory correction capability of nose cone swinging can satisfy the requirements of two-dimensional ballistic correction,and the validity and effectiveness of the method are proved.展开更多
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation under Grant No.2022M720419。
文摘Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.
基金Project(6187031976)supported by the National Natural Science Foundation of China
文摘Self-diffraction appears when the strong laser goes through two-dimensional material suspension,and this spatial self-phase modulation(SPPM)phenomenon can be used to measure nonlinear optical parameters and achieve optical switch.At present,the mechanism of SPPM is still ambiguous.The debate mainly focuses on whether the phenomenon is caused by the nonlinear refractive index of the two-dimensional material or the thermal effect of the laser.The lack of theory limits the dimension of the phase modulation to the radius of the diffraction ring and the vertical imbalance.Therefore,it is urgent to establish a unified and universal SSPM theoretical system of two-dimensional material.
基金Projects(41877272,51974359)supported by the National Natural Science Foundation of China。
文摘To study the energy storage and dissipation characteristics of deep rock under two-dimensional compression with constant confining pressure,the single cyclic loading-unloading two-dimensional compression tests were performed on granite specimens with two height-to-width(H/W)ratios under five confining pressures.Three energy density parameters(input energy density,elastic energy density and dissipated energy density)in the axial and lateral directions of granite specimens under different confining pressures were calculated using the area integral method.The experimental results show that,for the specimens with a specific H/W ratio,these three energy density parameters in the axial and lateral directions increase nonlinearly with the confining pressure as quadratic polynomial functions.Under constant confining pressure compression,the linear energy storage law of granite specimens in the axial and lateral directions was founded.Using the linear energy storage law in different directions,the elastic energy density in various directions(axial elastic energy density,lateral elastic energy density and total elastic energy density)of granite under any specific confining pressures can be calculated.When the H/W ratio varies from 1:1 to 2:1,the lateral compression energy storage coefficient increases and the corresponding axial compression energy storage coefficient decreases,while the total compression energy storage coefficient is almost independent of the H/W ratio.
文摘We propose the quadratic constrained formulas for the design of linear phase cosine modulated paraunitary filter banks given in references . Using these formulae, we can, directly, optimize the prototype filter coefficients in a quadratic form. A design example is also given to demonstrate these formulae in this paper.
文摘随着数字射频存储器(digital ratio frequency memory,DRFM)的成熟发展与广泛应用,基于DRFM的相干转发干扰成为当前雷达干扰技术的主流。相干转发干扰具有转发效率高、相干性强等突出优势,并且在数字域的处理算法灵活高效,能够产生复杂多样的干扰效果。但经过大量实践发现,当需要产生大范围连片干扰效果时,若干扰机采用密集转发,不但使DRFM运算量急剧增加,而且会破坏恒模约束,导致干扰机功放效率严重下降。基于该情况,本文提出了线性调频(linear frequency modulation,LFM)雷达信号的拉伸变换干扰方法:在数字域对雷达信号的脉宽、带宽分别压缩、展宽,即拉伸变换,再将其辐射至雷达接收机。拉伸信号经匹配滤波处理后,会呈现大范围连片相干干扰效果,干扰效果受拉伸变换因子影响,灵活可调,且拉伸变换干扰满足恒模约束。
文摘针对间歇采样转发干扰产生的假目标和目标高速运动产生的多普勒频移导致雷达脉压性能急剧下降的问题,提出一种高多普勒容限的线性调频离散相位编码(linear frequency modulation-discrete phase coding,LFM-DPC)复合调制相干波形集设计方法。在一定多普勒频移范围内,以最小化未转发信号自模糊函数旁瓣能量以及未转发信号与转发信号互模糊函数能量建立优化模型,并设计一种基于KKT(Karush-Kuhn-Tucker)最优性条件的迭代算法对模型求解。仿真实验表明,相比于遗传算法和单一调制的LFM和DPC信号,基于KKT最优性条件的交替迭代优化算法优化的LFM-DPC波形集有更好的抗间歇采样转发干扰性能。
基金supported by the National Basic Research Program of China(2011CB707001)the Fundamental Research Funds for the Central Universities(106112015CDJXY500001CDJZR165505)
文摘With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With this capability, ROSAR has extensive potential applications, such as self-navigation and self-landing. Moreover, it has many advantages if combined with the frequency modulated continuous wave (FMCW) technology. A novel geometric configuration and an imaging algorithm for helicopter-borne FMCW-ROSAR are proposed. Firstly, by per- forming the equivalent phase center principle, the separated trans- mitting and receiving antenna system is equalized to the case of system configuration with antenna for both transmitting and receiving signals. Based on this, the accurate two-dimensional spectrum is obtained and the Doppler frequency shift effect in- duced by the continuous motion of the platform during the long pulse duration is compensated. Next, the impacts of the velocity approximation error on the imaging algorithm are analyzed in de- tail, and the system parameters selection and resolution analysis are presented. The well-focused SAR image is then obtained by using the improved Omega-K algorithm incorporating the accurate compensation method for the velocity approximation error. FJnally, correctness of the analysis and effectiveness of the proposed al- gorithm are demonstrated through simulation results.
基金Project(9140A05030109HK01)supported by Equipment Pre-research Foundation,China
文摘It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the linear control is realized by the dynamic inverse nonlinear controlling theory and the three-time-scale separation method.The control ability and the simulation results are also tested and verified.The results show that the output responses of system track the expected curve well and the error is controlled in a given margin.The maximum correction is about±314 m in the lengthwise direction and±1 212 m in the crosswise direction from the moment of 5 s to the drop-point time when the angle of fire is 55°.Thus,based on the dynamic inverse control of feedback linearization,the trajectory correction capability of nose cone swinging can satisfy the requirements of two-dimensional ballistic correction,and the validity and effectiveness of the method are proved.