Instead of the capillary plasma generator(CPG),a discharge rod plasma generator(DRPG)is used in the30 mm electrothermal-chemical(ETC)gun to improve the ignition uniformity of the solid propellant.An axisymmetric two-d...Instead of the capillary plasma generator(CPG),a discharge rod plasma generator(DRPG)is used in the30 mm electrothermal-chemical(ETC)gun to improve the ignition uniformity of the solid propellant.An axisymmetric two-dimensional interior ballistics model of the solid propellant ETC gun(2D-IB-SPETCG)is presented to describe the process of the ETC launch.Both calculated pressure and projectile muzzle velocity accord well with the experimental results.The feasibility of the 2D-IB-SPETCG model is proved.Depending on the experimental data and initial parameters,detailed distribution of the ballistics parameters can be simulated.With the distribution of pressure and temperature of the gas phase and the propellant,the influence of plasma during the ignition process can be analyzed.Because of the radial flowing plasma,the propellant in the area of the DRPG is ignited within 0.01 ms,while all propellant in the chamber is ignited within 0.09 ms.The radial ignition delay time is much less than the axial delay time.During the ignition process,the radial pressure difference is less than 5 MPa at the place 0.025 m away from the breech.The radial ignition uniformity is proved.The temperature of the gas increases from several thousand K(conventional ignition)to several ten thousand K(plasma ignition).Compare the distribution of the density and temperature of the gas,we know that low density and high temperature gas appears near the exits of the DRPG,while high density and low temperature gas appears at the wall near the breech.The simulation of the 2D-IB-SPETCG model is an effective way to investigate the interior ballistics process of the ETC launch.The 2D-IB-SPETC model can be used for prediction and improvement of experiments.展开更多
Perovskite/silicon(Si) tandem solar cells have been recognized as the next-generation photovoltaic technology with efficiency over 30% and low cost. However, the intrinsic instability of traditional three-dimensional(...Perovskite/silicon(Si) tandem solar cells have been recognized as the next-generation photovoltaic technology with efficiency over 30% and low cost. However, the intrinsic instability of traditional three-dimensional(3D) hybrid perovskite seriously hinders the lifetimes of tandem devices. In this work, the quasi-two-dimensional(2D)(BA)_(2)(MA)_(n-1)Pbn I_(3n+1)(n = 1, 2, 3, 4, 5)(where MA denotes methylammonium and BA represents butylammonium), with senior stability and wider bandgap, are first used as an absorber of semitransparent top perovskite solar cells(PSCs) to construct a fourterminal(4T) tandem devices with a bottom Si-heterojunction cell. The device model is established by Silvaco Atlas based on experimental parameters. Simulation results show that in the optimized tandem device, the top cell(n = 4) obtains a power conversion efficiency(PCE) of 17.39% and the Si bottom cell shows a PCE of 11.44%, thus an overall PCE of 28.83%. Furthermore, by introducing a 90-nm lithium fluoride(LiF) anti-reflection layer to reduce the surface reflection loss, the current density(J_(sc)) of the top cell is enhanced from 15.56 m A/cm^(2) to 17.09 m A/cm^(2), the corresponding PCE reaches 19.05%, and the tandem PCE increases to 30.58%. Simultaneously, in the cases of n = 3, 4, and 5, all the tandem PCEs exceed the limiting theoretical efficiency of Si cells. Therefore, the 4T quasi-2D perovskite/Si devices provide a more cost-effective tandem strategy and long-term stability solutions.展开更多
The characteristics of collisional radio-frequency (rf) sheath dynamics over an elec-trode with a cylindrical hole is simulated by means of a self-consistent model which consists of two-dimensional time-dependent flui...The characteristics of collisional radio-frequency (rf) sheath dynamics over an elec-trode with a cylindrical hole is simulated by means of a self-consistent model which consists of two-dimensional time-dependent fluid equations coupled with Poisson equation. In addition, an equivalent-circuit model is coupled to the fluid equations in order to self-consistently determine re-lationship between the instantaneous potential at the rf-biased electrode and the sheath thickness. Two-dimensional profiles of the potential, the ion fluid velocity, and the distributions of the ion and electron densities within the sheath are computed under various discharge conditions, such as the discharge powers and the gas pressures. The results show that the existence of the cylindrical hole on the electrode significantly affects the sheath structure and generates a potential trap in the horizontal direction, which is particularly strong when the sheath thickness is comparable to the depth of the hole. Moreover, it is found that the collisional effects have a significant influence on the sheath characteristics.展开更多
The characteristics of a collisional dual frequency (DF) sheath near an electrode with a cylindrical hole are studied by utilizing a two-dimensional model which includes time-dependent fluid equations coupled with t...The characteristics of a collisional dual frequency (DF) sheath near an electrode with a cylindrical hole are studied by utilizing a two-dimensional model which includes time-dependent fluid equations coupled with the Poisson equation and an equivalent-circuit model, The effects of the gas pressure on the two-dimensional profiles of the potential, electric field, ion fluid velocity in a DF sheath are investigated. The simulation results show that the cylindrical hole on the electrode has a significant influence on the DF sheath structure, i.e., the sheath profile tends to wrap around the contour of the hole feature. Moreover, it is shown that the structure of the DF sheath is different from that of a single frequency (SF) sheath because the profile of the DF sheath is modulated by the combination of the high and low frequency sources. In addition the characteristics of the DF sheath are obviously affected by the collisional effects in the DF sheath.展开更多
A two-dimensional self-consistent fluid model is employed to investigate radio-frequency process parameters on the plasma properties in Ar microdischarges. The neutral gas density and temperature balance equations are...A two-dimensional self-consistent fluid model is employed to investigate radio-frequency process parameters on the plasma properties in Ar microdischarges. The neutral gas density and temperature balance equations are taken into account. We mainly investigate the effect of the electrode gap on the spatial distribution of the electron density and electron temperature profiles, due to a mode transition from the regime(secondary electrons emission is responsible for the significant ionization) to the regime(sheath oscillations and bulk electrons are responsible for sustaining discharge) induced by a sudden decrease of electron density and electron temperature.The pressure, radio-frequency sources frequency and voltage effects on the electron density are also elaborately investigated.展开更多
The level of deformation development of surrounding rocks is a vital predictor to evaluate impending coal mine disasters and it is important to establish accurate measurements of the deformed status to ensure coal min...The level of deformation development of surrounding rocks is a vital predictor to evaluate impending coal mine disasters and it is important to establish accurate measurements of the deformed status to ensure coal mine safety. Traditional deformation monitoring methods are mostly based on single parameter, in this paper, multiple approaches are integrated: firstly, both electric and elastic models are established,from which electric field distribution and seismic wave recording are calculated and finally, the resistivity profiles and source position information are determined using inversion methods, from which then the deformation and failure of mine floor are evaluated. According to the inversion results of both electric and seismic field signals, multiple-parameter dynamic monitoring of surrounding rock deformation in deep mine can be performed. The methodology is validated using numerical simulation results which shows that the multi-parameter dynamic monitoring methods have better results for surrounding rock deformation in deep mine monitoring than single parameter methods.展开更多
To establish the relationship among reservoir characteristics and rock physical parameters,we construct the well-bore rock physical models firstly,considering the influence factors,such as mineral composition,shale co...To establish the relationship among reservoir characteristics and rock physical parameters,we construct the well-bore rock physical models firstly,considering the influence factors,such as mineral composition,shale content,porosity,fluid type and saturation.Then with analyzing the change rules of elastic parameters along with the above influence factors and the cross-plots among elastic parameters,the sensitive elastic parameters of tight sandstone reservoir are determined,and the rock physics template of sweet spot is constructed to guide pre-stack seismic inversion.The results show that velocity ratio and Poisson impedance are the most sensitive elastic parameters to indicate the lithologic and gas-bearing properties of sweet spot in tight sandstone reservoir.The high-quality sweet spot is characterized by the lower velocity ratio and Poisson impedance.Finally,the actual seismic data are selected to predict the sweet spots in tight sandstone gas reservoirs,so as to verify the validity of the rock physical simulation results.The significant consistency between the relative logging curves and inversion results in different wells implies that the utilization of well-bore rock physical simulation can guide the prediction of sweet spot in tight sandstone gas reservoirs.展开更多
The adaptive mesh refinement (AMR) method is applied in the 2-D Euler multi-component elasticplastic hydrodynamics code (MEPH2Y). It is applied on detonation. Firstly, the AMR method is described, including a cons...The adaptive mesh refinement (AMR) method is applied in the 2-D Euler multi-component elasticplastic hydrodynamics code (MEPH2Y). It is applied on detonation. Firstly, the AMR method is described, including a conservative spatial interpolation, the time integration methodology with the adapitve time increment and an adaptive computational region method. The advantage of AMR technique is exhibited by numerical examples, including the 1-D C-J detonation and the 2-D implosion ignited from a single point. Results show that AMR can promote the computational efficiency, keeping the accuracy in interesting regions.展开更多
A simulation method for measurement of the cross-section of the^(14)N(n,a)^(11)B reaction with gas and solid samples using a gridded ionization chamber(GIC)has been established.Using the simulation,the experimental sp...A simulation method for measurement of the cross-section of the^(14)N(n,a)^(11)B reaction with gas and solid samples using a gridded ionization chamber(GIC)has been established.Using the simulation,the experimental spectra of both^(14)N(n,a)^(11)B events and background from other reactions can be predicted,and the experimental scheme can be optimized.According to the simulation results,the optimal experimental parameters,including the pressure of the working gas and the compositions of the working gas and the sample,can be determined.In addition,the simulation results can be used to determine the valid event area and calculate the detection efficiency for valid events.A measurement of the cross-sections of the^(14)N(n,a)^(11)B reaction at E_(n)=4.25,4.50,4.75,5.00,5.25,and 5.50 MeV,based on the 4.5-MV Van de Graff accelerator at Peking University(PKU)using a GIC as the detector for the outgoing a particles,has been performed.The good agreement of the spectra from the simulation and experiment demonstrated the universality of this simulation method,which can be used to accurately measure neutroninduced light-charged particle emission reactions.展开更多
Optimization efficiencies and mechanisms of simulated annealing, genetic algorithm, differential evolution and downhill simplex differential evolution are compared and analyzed. Simulated annealing and genetic algorit...Optimization efficiencies and mechanisms of simulated annealing, genetic algorithm, differential evolution and downhill simplex differential evolution are compared and analyzed. Simulated annealing and genetic algorithm use a directed random process to search the parameter space for an optimal solution. They include the ability to avoid local minima, but as no gradient information is used, searches may be relatively inefficient. Differential evolution uses information from a distance and azimuth between individuals of a population to search the parameter space, the initial search is effective, but the search speed decreases quickly because differential information between the individuals of population vanishes. Local downhill simplex and global differential evolution methods are developed separately, and combined to produce a hybrid downhill simplex differential evolution algorithm. The hybrid algorithm is sensitive to gradients of the object function and search of the parameter space is effective. These algorithms are applied to the matched field inversion with synthetic data. Optimal values of the parameters, the final values of object function and inversion time is presented and compared.展开更多
The Ablowitz-Ladik equation is a very important model in nonlinear mathematical physics. In this paper, the hyper- bolic function solitary wave solutions, the trigonometric function periodic wave solutions, and the ra...The Ablowitz-Ladik equation is a very important model in nonlinear mathematical physics. In this paper, the hyper- bolic function solitary wave solutions, the trigonometric function periodic wave solutions, and the rational wave solutions with more arbitrary parameters of two-dimensional Ablowitz-Ladik equation are derived by using the (GI/G)-expansion method, and the effects of the parameters (including the coupling constant and other parameters) on the linear stability of the exact solutions are analysed and numerically simulated.展开更多
In this study,we focused on a novel parallel mechanism for utilizing the motion simulator of a high-speed boat(HSB).First,we expressed the real behavior of the HSB based on a seakeeping trial.For this purpose,we recor...In this study,we focused on a novel parallel mechanism for utilizing the motion simulator of a high-speed boat(HSB).First,we expressed the real behavior of the HSB based on a seakeeping trial.For this purpose,we recorded the motion parameters of the HSB by gyroscope and accelerometer sensors,while using a special data acquisition technique.Additionally,a Chebychev highpass filter was applied as a noise filter to the accelerometer sensor.Then,a novel 3 degrees of freedom(DoF)parallel mechanism(1T2R)with prismatic actuators is proposed and analyses were performed on its inverse kinematics,velocity,and acceleration.Finally,the inverse dynamic analysis is presented by the principle of virtual work,and the validation of the analytical equations was compared by the ADAMS simulation software package.Additionally,according to the recorded experimental data of the HSB,the feasibility of the proposed novel parallel mechanism motion simulator of the HSB,as well as the necessity of using of the washout filters,was explored.展开更多
文摘Instead of the capillary plasma generator(CPG),a discharge rod plasma generator(DRPG)is used in the30 mm electrothermal-chemical(ETC)gun to improve the ignition uniformity of the solid propellant.An axisymmetric two-dimensional interior ballistics model of the solid propellant ETC gun(2D-IB-SPETCG)is presented to describe the process of the ETC launch.Both calculated pressure and projectile muzzle velocity accord well with the experimental results.The feasibility of the 2D-IB-SPETCG model is proved.Depending on the experimental data and initial parameters,detailed distribution of the ballistics parameters can be simulated.With the distribution of pressure and temperature of the gas phase and the propellant,the influence of plasma during the ignition process can be analyzed.Because of the radial flowing plasma,the propellant in the area of the DRPG is ignited within 0.01 ms,while all propellant in the chamber is ignited within 0.09 ms.The radial ignition delay time is much less than the axial delay time.During the ignition process,the radial pressure difference is less than 5 MPa at the place 0.025 m away from the breech.The radial ignition uniformity is proved.The temperature of the gas increases from several thousand K(conventional ignition)to several ten thousand K(plasma ignition).Compare the distribution of the density and temperature of the gas,we know that low density and high temperature gas appears near the exits of the DRPG,while high density and low temperature gas appears at the wall near the breech.The simulation of the 2D-IB-SPETCG model is an effective way to investigate the interior ballistics process of the ETC launch.The 2D-IB-SPETC model can be used for prediction and improvement of experiments.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62004151, 62274126, 62274126, 61874083, and 61804113)the China Postdoctoral Science Foundation (Grant No. 2020T130490)。
文摘Perovskite/silicon(Si) tandem solar cells have been recognized as the next-generation photovoltaic technology with efficiency over 30% and low cost. However, the intrinsic instability of traditional three-dimensional(3D) hybrid perovskite seriously hinders the lifetimes of tandem devices. In this work, the quasi-two-dimensional(2D)(BA)_(2)(MA)_(n-1)Pbn I_(3n+1)(n = 1, 2, 3, 4, 5)(where MA denotes methylammonium and BA represents butylammonium), with senior stability and wider bandgap, are first used as an absorber of semitransparent top perovskite solar cells(PSCs) to construct a fourterminal(4T) tandem devices with a bottom Si-heterojunction cell. The device model is established by Silvaco Atlas based on experimental parameters. Simulation results show that in the optimized tandem device, the top cell(n = 4) obtains a power conversion efficiency(PCE) of 17.39% and the Si bottom cell shows a PCE of 11.44%, thus an overall PCE of 28.83%. Furthermore, by introducing a 90-nm lithium fluoride(LiF) anti-reflection layer to reduce the surface reflection loss, the current density(J_(sc)) of the top cell is enhanced from 15.56 m A/cm^(2) to 17.09 m A/cm^(2), the corresponding PCE reaches 19.05%, and the tandem PCE increases to 30.58%. Simultaneously, in the cases of n = 3, 4, and 5, all the tandem PCEs exceed the limiting theoretical efficiency of Si cells. Therefore, the 4T quasi-2D perovskite/Si devices provide a more cost-effective tandem strategy and long-term stability solutions.
基金The project supported by the National Natural Science Foundation of China(No.19975008 and 10275009)and by MOEC (Ministry of Education,China)Grant for Cross-Century Excellent ScholarSupport from the Natural Sciences and Engineering Research Council of C
文摘The characteristics of collisional radio-frequency (rf) sheath dynamics over an elec-trode with a cylindrical hole is simulated by means of a self-consistent model which consists of two-dimensional time-dependent fluid equations coupled with Poisson equation. In addition, an equivalent-circuit model is coupled to the fluid equations in order to self-consistently determine re-lationship between the instantaneous potential at the rf-biased electrode and the sheath thickness. Two-dimensional profiles of the potential, the ion fluid velocity, and the distributions of the ion and electron densities within the sheath are computed under various discharge conditions, such as the discharge powers and the gas pressures. The results show that the existence of the cylindrical hole on the electrode significantly affects the sheath structure and generates a potential trap in the horizontal direction, which is particularly strong when the sheath thickness is comparable to the depth of the hole. Moreover, it is found that the collisional effects have a significant influence on the sheath characteristics.
基金supported by National Natural Science Foundation of China (Nos.10635010,10572035)
文摘The characteristics of a collisional dual frequency (DF) sheath near an electrode with a cylindrical hole are studied by utilizing a two-dimensional model which includes time-dependent fluid equations coupled with the Poisson equation and an equivalent-circuit model, The effects of the gas pressure on the two-dimensional profiles of the potential, electric field, ion fluid velocity in a DF sheath are investigated. The simulation results show that the cylindrical hole on the electrode has a significant influence on the DF sheath structure, i.e., the sheath profile tends to wrap around the contour of the hole feature. Moreover, it is shown that the structure of the DF sheath is different from that of a single frequency (SF) sheath because the profile of the DF sheath is modulated by the combination of the high and low frequency sources. In addition the characteristics of the DF sheath are obviously affected by the collisional effects in the DF sheath.
基金Supported by the Fundamental Research Funds in Heilongjiang Provincial Universities of China under Grant No 135209312
文摘A two-dimensional self-consistent fluid model is employed to investigate radio-frequency process parameters on the plasma properties in Ar microdischarges. The neutral gas density and temperature balance equations are taken into account. We mainly investigate the effect of the electrode gap on the spatial distribution of the electron density and electron temperature profiles, due to a mode transition from the regime(secondary electrons emission is responsible for the significant ionization) to the regime(sheath oscillations and bulk electrons are responsible for sustaining discharge) induced by a sudden decrease of electron density and electron temperature.The pressure, radio-frequency sources frequency and voltage effects on the electron density are also elaborately investigated.
基金financial support from the Fundamental Research Funds for the Central Universities of China (No. 2015QNB19)the financial support from the Open Fund of Key Laboratory of Safety and High-efficiency Coal Mining, Ministry of Education of China (No. JYBSYS2015107)+2 种基金the National Natural Science Foundation of China (Nos. 51404254, 41430317 and U1261202)the China Postdoctoral Science Foundation of China (No. 2014M560465)the Jiangsu Planned Projects for Postdoctoral Research Funds of China (No. 1302050B)
文摘The level of deformation development of surrounding rocks is a vital predictor to evaluate impending coal mine disasters and it is important to establish accurate measurements of the deformed status to ensure coal mine safety. Traditional deformation monitoring methods are mostly based on single parameter, in this paper, multiple approaches are integrated: firstly, both electric and elastic models are established,from which electric field distribution and seismic wave recording are calculated and finally, the resistivity profiles and source position information are determined using inversion methods, from which then the deformation and failure of mine floor are evaluated. According to the inversion results of both electric and seismic field signals, multiple-parameter dynamic monitoring of surrounding rock deformation in deep mine can be performed. The methodology is validated using numerical simulation results which shows that the multi-parameter dynamic monitoring methods have better results for surrounding rock deformation in deep mine monitoring than single parameter methods.
基金supported by the National Key R&D Program of China(Grant No.2018YFC1405900)the Major Projects of National Science and Technology(Grant Nos.2016ZX05011-002,2016ZX05027-002-005)+3 种基金the National Natural Science Foundation of China(Grant No.41806073)the Natural Science Foundation of Shandong Province(Grant No.ZR2017BD014)Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals,Shandong University of Science and Technology(Grant No.DMSM2017042)the Fundamental Research Funds for the Central Universities(Grant No.201964016)
文摘To establish the relationship among reservoir characteristics and rock physical parameters,we construct the well-bore rock physical models firstly,considering the influence factors,such as mineral composition,shale content,porosity,fluid type and saturation.Then with analyzing the change rules of elastic parameters along with the above influence factors and the cross-plots among elastic parameters,the sensitive elastic parameters of tight sandstone reservoir are determined,and the rock physics template of sweet spot is constructed to guide pre-stack seismic inversion.The results show that velocity ratio and Poisson impedance are the most sensitive elastic parameters to indicate the lithologic and gas-bearing properties of sweet spot in tight sandstone reservoir.The high-quality sweet spot is characterized by the lower velocity ratio and Poisson impedance.Finally,the actual seismic data are selected to predict the sweet spots in tight sandstone gas reservoirs,so as to verify the validity of the rock physical simulation results.The significant consistency between the relative logging curves and inversion results in different wells implies that the utilization of well-bore rock physical simulation can guide the prediction of sweet spot in tight sandstone gas reservoirs.
基金Sponsored by the National Natural Science Foundation of China(10676120)Laboratory of Computational Physics Foundation(9140C690101070C69)
文摘The adaptive mesh refinement (AMR) method is applied in the 2-D Euler multi-component elasticplastic hydrodynamics code (MEPH2Y). It is applied on detonation. Firstly, the AMR method is described, including a conservative spatial interpolation, the time integration methodology with the adapitve time increment and an adaptive computational region method. The advantage of AMR technique is exhibited by numerical examples, including the 1-D C-J detonation and the 2-D implosion ignited from a single point. Results show that AMR can promote the computational efficiency, keeping the accuracy in interesting regions.
基金supported by the National Natural Science Foundation of China(No.12075008)Science and Technology on Nuclear Data Laboratory,China Nuclear Data Centerthe State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2020KFJ22)。
文摘A simulation method for measurement of the cross-section of the^(14)N(n,a)^(11)B reaction with gas and solid samples using a gridded ionization chamber(GIC)has been established.Using the simulation,the experimental spectra of both^(14)N(n,a)^(11)B events and background from other reactions can be predicted,and the experimental scheme can be optimized.According to the simulation results,the optimal experimental parameters,including the pressure of the working gas and the compositions of the working gas and the sample,can be determined.In addition,the simulation results can be used to determine the valid event area and calculate the detection efficiency for valid events.A measurement of the cross-sections of the^(14)N(n,a)^(11)B reaction at E_(n)=4.25,4.50,4.75,5.00,5.25,and 5.50 MeV,based on the 4.5-MV Van de Graff accelerator at Peking University(PKU)using a GIC as the detector for the outgoing a particles,has been performed.The good agreement of the spectra from the simulation and experiment demonstrated the universality of this simulation method,which can be used to accurately measure neutroninduced light-charged particle emission reactions.
文摘Optimization efficiencies and mechanisms of simulated annealing, genetic algorithm, differential evolution and downhill simplex differential evolution are compared and analyzed. Simulated annealing and genetic algorithm use a directed random process to search the parameter space for an optimal solution. They include the ability to avoid local minima, but as no gradient information is used, searches may be relatively inefficient. Differential evolution uses information from a distance and azimuth between individuals of a population to search the parameter space, the initial search is effective, but the search speed decreases quickly because differential information between the individuals of population vanishes. Local downhill simplex and global differential evolution methods are developed separately, and combined to produce a hybrid downhill simplex differential evolution algorithm. The hybrid algorithm is sensitive to gradients of the object function and search of the parameter space is effective. These algorithms are applied to the matched field inversion with synthetic data. Optimal values of the parameters, the final values of object function and inversion time is presented and compared.
基金Project supported by the Basic Science and the Front Technology Research Foundation of Henan Province,China(Grant Nos.092300410179 and122102210427)the Doctoral Scientific Research Foundation of Henan University of Science and Technology,China(Grant No.09001204)+1 种基金the Scientific Research Innovation Ability Cultivation Foundation of Henan University of Science and Technology,China(Grant No.011CX011)the Scientific Research Foundation of Henan University of Science and Technology(Grant No.2012QN011)
文摘The Ablowitz-Ladik equation is a very important model in nonlinear mathematical physics. In this paper, the hyper- bolic function solitary wave solutions, the trigonometric function periodic wave solutions, and the rational wave solutions with more arbitrary parameters of two-dimensional Ablowitz-Ladik equation are derived by using the (GI/G)-expansion method, and the effects of the parameters (including the coupling constant and other parameters) on the linear stability of the exact solutions are analysed and numerically simulated.
文摘In this study,we focused on a novel parallel mechanism for utilizing the motion simulator of a high-speed boat(HSB).First,we expressed the real behavior of the HSB based on a seakeeping trial.For this purpose,we recorded the motion parameters of the HSB by gyroscope and accelerometer sensors,while using a special data acquisition technique.Additionally,a Chebychev highpass filter was applied as a noise filter to the accelerometer sensor.Then,a novel 3 degrees of freedom(DoF)parallel mechanism(1T2R)with prismatic actuators is proposed and analyses were performed on its inverse kinematics,velocity,and acceleration.Finally,the inverse dynamic analysis is presented by the principle of virtual work,and the validation of the analytical equations was compared by the ADAMS simulation software package.Additionally,according to the recorded experimental data of the HSB,the feasibility of the proposed novel parallel mechanism motion simulator of the HSB,as well as the necessity of using of the washout filters,was explored.