Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying expl...Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying explosion loads remains unclear.In this study,prefabricated perforated shale samples with parallel and vertical bedding are fractured under five distinct explosion loads using a MISEF experimental setup.High-frequency explosion pressure-time curves were monitored within an equivalent perforation,and computed tomography scanning along with three-dimensional reconstruction techniques were used to investigate fracture propagation patterns.Additionally,the formation mechanism and influencing factors of explosion crack-generated fines(CGF)were clarified by analyzing the morphology and statistics of explosion debris particles.The results indicate that methane explosion generated oscillating-pulse loads within perforations.Explosion characteristic parameters increase with increasing initial pressure.Explosion load and bedding orientation significantly influence fracture propagation patterns.As initial pressure increases,the fracture mode transitions from bi-wing to 4–5 radial fractures.In parallel bedding shale,radial fractures noticeably deflect along the bedding surface.Vertical bedding facilitates the development of transverse fractures oriented parallel to the cross-section.Bifurcation-merging of explosioninduced fractures generated CGF.CGF mass and fractal dimension increase,while average particle size decreases with increasing explosion load.This study provides valuable insights into MISEF technology.展开更多
Integrable systems play a crucial role in physics and mathematics.In particular,the traditional(1+1)-dimensional and(2+1)-dimensional integrable systems have received significant attention due to the rarity of integra...Integrable systems play a crucial role in physics and mathematics.In particular,the traditional(1+1)-dimensional and(2+1)-dimensional integrable systems have received significant attention due to the rarity of integrable systems in higher dimensions.Recent studies have shown that abundant higher-dimensional integrable systems can be constructed from(1+1)-dimensional integrable systems by using a deformation algorithm.Here we establish a new(2+1)-dimensional Chen-Lee-Liu(C-L-L)equation using the deformation algorithm from the(1+1)-dimensional C-L-L equation.The new system is integrable with its Lax pair obtained by applying the deformation algorithm to that of the(1+1)-dimension.It is challenging to obtain the exact solutions for the new integrable system because the new system combines both the original C-L-L equation and its reciprocal transformation.The traveling wave solutions are derived in implicit function expression,and some asymmetry peakon solutions are found.展开更多
Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media withi...Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media within these rocks.Faced with the challenge of calculating the three-dimensional fractal dimensions of rock porosity,this study proposes an innovative computational process that directly calculates the three-dimensional fractal dimensions from a geometric perspective.By employing a composite denoising approach that integrates Fourier transform(FT)and wavelet transform(WT),coupled with multimodal pore extraction techniques such as threshold segmentation,top-hat transformation,and membrane enhancement,we successfully crafted accurate digital rock models.The improved box-counting method was then applied to analyze the voxel data of these digital rocks,accurately calculating the fractal dimensions of the rock pore distribution.Further numerical simulations of permeability experiments were conducted to explore the physical correlations between the rock pore fractal dimensions,porosity,and absolute permeability.The results reveal that rocks with higher fractal dimensions exhibit more complex pore connectivity pathways and a wider,more uneven pore distribution,suggesting that the ideal rock samples should possess lower fractal dimensions and higher effective porosity rates to achieve optimal fluid transmission properties.The methodology and conclusions of this study provide new tools and insights for the quantitative analysis of complex pores in rocks and contribute to the exploration of the fractal transport properties of media within rocks.展开更多
Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitat...Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitations,a novel two-level serially concatenated MLC scheme,in which the bitlevels with similar reliability are bundled and transmitted together,is proposed.The proposed scheme hierarchically protects the two bit-level sets:the bitlevel sets at the higher level are sufficiently reliable and do not require excessive resources for protection,whereas only the bit-level sets at the lower level are encoded by polar codes.The proposed scheme has the advantages of low power consumption,low delay and high reliability.Moreover,an optimized constellation signal labeling rule that can enhance the performance is proposed.Finally,the superiority of the proposed scheme is validated through the theoretical analysis and simulation results.Compared with the bit interleaving coding modulation(BICM)scheme,under 256-quadrature amplitude modulation(QAM),the proposed scheme attains a performance gain of 1.0 dB while reducing the decoding complexity by 54.55%.展开更多
Quantum error correction technology is an important method to eliminate errors during the operation of quantum computers.In order to solve the problem of influence of errors on physical qubits,we propose an approximat...Quantum error correction technology is an important method to eliminate errors during the operation of quantum computers.In order to solve the problem of influence of errors on physical qubits,we propose an approximate error correction scheme that performs dimension mapping operations on surface codes.This error correction scheme utilizes the topological properties of error correction codes to map the surface code dimension to three dimensions.Compared to previous error correction schemes,the present three-dimensional surface code exhibits good scalability due to its higher redundancy and more efficient error correction capabilities.By reducing the number of ancilla qubits required for error correction,this approach achieves savings in measurement space and reduces resource consumption costs.In order to improve the decoding efficiency and solve the problem of the correlation between the surface code stabilizer and the 3D space after dimension mapping,we employ a reinforcement learning(RL)decoder based on deep Q-learning,which enables faster identification of the optimal syndrome and achieves better thresholds through conditional optimization.Compared to the minimum weight perfect matching decoding,the threshold of the RL trained model reaches 0.78%,which is 56%higher and enables large-scale fault-tolerant quantum computation.展开更多
Quantum computing has the potential to solve complex problems that are inefficiently handled by classical computation.However,the high sensitivity of qubits to environmental interference and the high error rates in cu...Quantum computing has the potential to solve complex problems that are inefficiently handled by classical computation.However,the high sensitivity of qubits to environmental interference and the high error rates in current quantum devices exceed the error correction thresholds required for effective algorithm execution.Therefore,quantum error correction technology is crucial to achieving reliable quantum computing.In this work,we study a topological surface code with a two-dimensional lattice structure that protects quantum information by introducing redundancy across multiple qubits and using syndrome qubits to detect and correct errors.However,errors can occur not only in data qubits but also in syndrome qubits,and different types of errors may generate the same syndromes,complicating the decoding task and creating a need for more efficient decoding methods.To address this challenge,we used a transformer decoder based on an attention mechanism.By mapping the surface code lattice,the decoder performs a self-attention process on all input syndromes,thereby obtaining a global receptive field.The performance of the decoder was evaluated under a phenomenological error model.Numerical results demonstrate that the decoder achieved a decoding accuracy of 93.8%.Additionally,we obtained decoding thresholds of 5%and 6.05%at maximum code distances of 7 and 9,respectively.These results indicate that the decoder used demonstrates a certain capability in correcting noise errors in surface codes.展开更多
Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-med...Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-medium length regime.However,this list decoding complexity becomes formidable as the decoding output list size increases.This is primarily incurred by the OSD.Addressing this challenge,this paper proposes the low complexity SCL decoding through reducing the complexity of component code decoding,and pruning the redundant SCL decoding paths.For the former,an efficient skipping rule is introduced for the OSD so that the higher order decoding can be skipped when they are not possible to provide a more likely codeword candidate.It is further extended to the OSD variant,the box-andmatch algorithm(BMA),in facilitating the component code decoding.Moreover,through estimating the correlation distance lower bounds(CDLBs)of the component code decoding outputs,a path pruning(PP)-SCL decoding is proposed to further facilitate the decoding of U-UV codes.In particular,its integration with the improved OSD and BMA is discussed.Simulation results show that significant complexity reduction can be achieved.Consequently,the U-UV codes can outperform the cyclic redundancy check(CRC)-polar codes with a similar decoding complexity.展开更多
Quantum error-correcting codes are essential for fault-tolerant quantum computing,as they effectively detect and correct noise-induced errors by distributing information across multiple physical qubits.The subsystem s...Quantum error-correcting codes are essential for fault-tolerant quantum computing,as they effectively detect and correct noise-induced errors by distributing information across multiple physical qubits.The subsystem surface code with three-qubit check operators demonstrates significant application potential due to its simplified measurement operations and low logical error rates.However,the existing minimum-weight perfect matching(MWPM)algorithm exhibits high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoder based on a graph attention network(GAT),representing error syndromes as undirected graphs with edge weights,and employing a multihead attention mechanism to efficiently aggregate node features and enable parallel computation.Compared to MWPM,the GAT decoder exhibits linear growth in computational complexity,adapts to different quantum code structures,and demonstrates stronger robustness under high physical error rates.The experimental results demonstrate that the proposed decoder achieves an overall accuracy of 89.95%under various small code lattice sizes(L=2,3,4,5),with the logical error rate threshold increasing to 0.0078,representing an improvement of approximately 13.04%compared to the MWPM decoder.This result significantly outperforms traditional methods,showcasing superior performance under small code lattice sizes and providing a more efficient decoding solution for large-scale quantum error correction.展开更多
Based on the theory of multibody system dynamics, the spatial kinematics analysis of the Mcpherson independent suspension widely used in the car was carried out. A practical and simpler method was provided to reduce t...Based on the theory of multibody system dynamics, the spatial kinematics analysis of the Mcpherson independent suspension widely used in the car was carried out. A practical and simpler method was provided to reduce the number of the generalized coordinates and constraint functions. By solving the nonlinear equations, the motion of any points in the whole suspension and wheel system can be predicted, including the spatial changes of the wheel alignment parameters which are of great importance to the car performances.展开更多
Some dimensionality reduction (DR) approaches based on support vector machine (SVM) are proposed. But the acquirement of the projection matrix in these approaches only considers the between-class margin based on S...Some dimensionality reduction (DR) approaches based on support vector machine (SVM) are proposed. But the acquirement of the projection matrix in these approaches only considers the between-class margin based on SVM while ignoring the within-class information in data. This paper presents a new DR approach, call- ed the dimensionality reduction based on SVM and LDA (DRSL). DRSL considers the between-class margins from SVM and LDA, and the within-class compactness from LDA to obtain the projection matrix. As a result, DRSL can realize the combination of the between-class and within-class information and fit the between-class and within-class structures in data. Hence, the obtained projection matrix increases the generalization ability of subsequent classification techniques. Experiments applied to classification techniques show the effectiveness of the proposed method.展开更多
Two dimensional parabolic stability equations (PSE) are numerically solved using expansions in orthogonal functions in the normal direction.The Chebyshev polynomials approximation,which is a very useful form of ortho...Two dimensional parabolic stability equations (PSE) are numerically solved using expansions in orthogonal functions in the normal direction.The Chebyshev polynomials approximation,which is a very useful form of orthogonal expansions, is applied to solving parabolic stability equations. It is shown that results of great accuracy are effectively obtained.The availability of using Chebyshev approximations in parabolic stability equations is confirmed.展开更多
Principles of dimensional analysis are applied in a new interpretation of penetration of ceramic targets subjected to hypervelocity impact. The analysis results in a power series representation – in terms of inverse ...Principles of dimensional analysis are applied in a new interpretation of penetration of ceramic targets subjected to hypervelocity impact. The analysis results in a power series representation – in terms of inverse velocity – of normalized depth of penetration that reduces to the hydrodynamic solution at high impact velocities. Specifically considered are test data from four literature sources involving penetration of confined thick ceramic targets by tungsten long rod projectiles. The ceramics are AD-995 alumina, aluminum nitride, silicon carbide, and boron carbide.Test data can be accurately represented by the linear form of the power series, whereby the same value of a single fitting parameter applies remarkably well for all four ceramics. Comparison of the present model with others in the literature(e.g., Tate's theory) demonstrates a target resistance stress that depends on impact velocity, linearly in the limiting case. Comparison of the present analysis with recent research involving penetration of thin ceramic tiles at lower typical impact velocities confirms the importance of target properties related to fracture and shear strength at the Hugoniot Elastic Limit(HEL) only in the latter. In contrast, in the former(i.e., hypervelocity and thick target) experiments, the current analysis demonstrates dominant dependence of penetration depth only by target mass density. Such comparisons suggest transitions from microstructure-controlled to density-controlled penetration resistance with increasing impact velocity and ceramic target thickness.Production and hosting by Elsevier B.V. on behalf of China Ordnance Society.展开更多
Low dimensional perovskites have recently attracted much attention due to their vertical growth of crys- talline orientation, excellent film morphology, and long-term humidity, light, and heat stability, How- ever, lo...Low dimensional perovskites have recently attracted much attention due to their vertical growth of crys- talline orientation, excellent film morphology, and long-term humidity, light, and heat stability, How- ever, low dimensional perovskites suffer fl'om low power conversion efficiency (PCE) with respect to their three dimensional analogues. Therefore, it is imperative to find excellent low-dimensional perovskite materials for improving the PCE. Previous work has demonstrated that bulkier organic molecules, e,g., C6Hs(CH2)2NH3+ (PEA+), CH3(CH2)3NH3+(n-BAT, iso-BA+), C2H4NH3 +, and polyethylenimine cations (PEI+), play an important role in the formation of low-dimensional perovskites. In this review, we review the recent development of low dimensional perovskites for solar cells application in terms of film preparation, photophysics, and stability of perovskites, as well as the related device structure and physics. We have also discussed the future development of low-dimensional perovskites from materials design, fabri- cation processes, and device structure.展开更多
The frame of text classification system was presented. The high dimensionality in feature space for text classification was studied. The mutual information is a widely used information theoretic measure, in a descript...The frame of text classification system was presented. The high dimensionality in feature space for text classification was studied. The mutual information is a widely used information theoretic measure, in a descriptive way, to measure the stochastic dependency of discrete random variables. The measure method was used as a criterion to reduce high dimensionality of feature vectors in text classification on Web. Feature selections or conversions were performed by using maximum mutual information including linear and non-linear feature conversions. Entropy was used and extended to find right features commendably in pattern recognition systems. Favorable foundation would be established for text classification mining.展开更多
With the rapidly increased concerns in environmental pollution, there have been urgent needs to develop fast, sensitive, low-cost and multiplexed sensing devices for the detection of environmental pollutants. Two-dime...With the rapidly increased concerns in environmental pollution, there have been urgent needs to develop fast, sensitive, low-cost and multiplexed sensing devices for the detection of environmental pollutants. Two-dimensional(2D) nanomaterials hold great promise due to their unique chemical and physical properties, which have been extensively employed to monitor the environmental pollutants combined with different detection techniques. In this review, we summarize recent advances in 2D nanomaterials-based electrochemical sensors for detecting heavy metal ions, organic compounds, pesticides, antibiotics and bacteria. We also discuss perspectives and challenges of 2D nanomaterials in environmental monitoring.展开更多
Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditi...Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions. The electric potential is defined by an ellip- tic equation and it appears in the following three equations via the electric field intensity. The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation. A mixed finite volume element approximation, keeping physical conservation law, is used to get numerical values of the electric potential and the accuracy is improved one order. Two con- centrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences. This method can overcome numerical oscillation, dispersion and decreases computational complexity. Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened. An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations. This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device.展开更多
Objective: To treat humerus fracture with three dimensional pattern and finite element analysis, providing mechanical basis for treating humerus fracture. Methods: Humerus pattern was established based on the CT image...Objective: To treat humerus fracture with three dimensional pattern and finite element analysis, providing mechanical basis for treating humerus fracture. Methods: Humerus pattern was established based on the CT images, and calculation was done by ANSYS5. 6 software. Three dimensional ten-node tetrahedron unit was selected and were divided into 2 729 nodes, 49 041 units. Distribution and amount of axial compression of humerus were analyzed when clip angle was 30°, 45°, 90° between fracture face and axial line with fixed X, Y, Z directions. Results: The distribution of stress was greatly different between fracture face and non fracture face. Stress in fracture part was fairly concentrated with incomplete symmetric distribution around the center of fracture face; Greater stress distributed in the regions 10 mm from fracture face, which was 2-3 times that of other stress regions. Conclusion: Required load must be estimated under various conditions as to select the suitable internal fixation implants during the treatment of humerus fracture, which can provide helpful stress environment for fracture healing.展开更多
Three high dimensional spatial standardization algorithms are used for diffusion tensor image(DTI)registration,and seven kinds of methods are used to evaluate their performances.Firstly,the template used in this paper...Three high dimensional spatial standardization algorithms are used for diffusion tensor image(DTI)registration,and seven kinds of methods are used to evaluate their performances.Firstly,the template used in this paper was obtained by spatial transformation of 16 subjects by means of tensor-based standardization.Then,high dimensional standardization algorithms for diffusion tensor images,including fractional anisotropy(FA)based diffeomorphic registration algorithm,FA based elastic registration algorithm and tensor-based registration algorithm,were performed.Finally,7 kinds of evaluation methods,including normalized standard deviation,dyadic coherence,diffusion cross-correlation,overlap of eigenvalue-eigenvector pairs,Euclidean distance of diffusion tensor,and Euclidean distance of the deviatoric tensor and deviatoric of tensors,were used to qualitatively compare and summarize the above standardization algorithms.Experimental results revealed that the high-dimensional tensor-based standardization algorithms perform well and can maintain the consistency of anatomical structures.展开更多
Wood has no inherent natural resistance against agents of biodegradation. We evaluated the effects of metal bath heat treatment(MBHT) on decay resistance and dimensional stability of Chinese parasol(Firmiana simplex) ...Wood has no inherent natural resistance against agents of biodegradation. We evaluated the effects of metal bath heat treatment(MBHT) on decay resistance and dimensional stability of Chinese parasol(Firmiana simplex) and Chinese fir(Cunninghamia lanceolata) wood. A low melting point alloy was used as heating medium in the treatment of the wood samples at 150, 180, and 210 °C for2, 4, and 8 h. Heat-treated and control samples were exposed to brown rot fungus(Poria placenta) and white rot fungus(Coriolus versicolor) for decay resistance testing and anti-swelling efficiency(ASE). The improved decay resistance with increase temperatures with low mass losses of 7.3 and 7.3% for F. simplex, and 3.9 and 3.6% for C.lanceolata at 210 °C for 8 h against Coriolus versicolor and Poria placenta, respectively. ASE indicated that MBHT contributed to improved dimensional stability of both wood species after treatment. Scanning electron micrograph results indicate that metal bath-treated samples showed strong decay resistance. Therefore, our approach to thermally modify wood should be explored to overcome the energy utilization by using low melting point alloy for the heat treatment of wood.展开更多
基金funded by the National Key Research and Development Program of China(No.2020YFA0711800)the National Science Fund for Distinguished Young Scholars(No.51925404)+2 种基金the National Natural Science Foundation of China(No.12372373)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX24_2909)the Graduate Innovation Program of China University of Mining and Technology(No.2024WLKXJ134)。
文摘Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying explosion loads remains unclear.In this study,prefabricated perforated shale samples with parallel and vertical bedding are fractured under five distinct explosion loads using a MISEF experimental setup.High-frequency explosion pressure-time curves were monitored within an equivalent perforation,and computed tomography scanning along with three-dimensional reconstruction techniques were used to investigate fracture propagation patterns.Additionally,the formation mechanism and influencing factors of explosion crack-generated fines(CGF)were clarified by analyzing the morphology and statistics of explosion debris particles.The results indicate that methane explosion generated oscillating-pulse loads within perforations.Explosion characteristic parameters increase with increasing initial pressure.Explosion load and bedding orientation significantly influence fracture propagation patterns.As initial pressure increases,the fracture mode transitions from bi-wing to 4–5 radial fractures.In parallel bedding shale,radial fractures noticeably deflect along the bedding surface.Vertical bedding facilitates the development of transverse fractures oriented parallel to the cross-section.Bifurcation-merging of explosioninduced fractures generated CGF.CGF mass and fractal dimension increase,while average particle size decreases with increasing explosion load.This study provides valuable insights into MISEF technology.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12275144,12235007,and 11975131)K.C.Wong Magna Fund in Ningbo University。
文摘Integrable systems play a crucial role in physics and mathematics.In particular,the traditional(1+1)-dimensional and(2+1)-dimensional integrable systems have received significant attention due to the rarity of integrable systems in higher dimensions.Recent studies have shown that abundant higher-dimensional integrable systems can be constructed from(1+1)-dimensional integrable systems by using a deformation algorithm.Here we establish a new(2+1)-dimensional Chen-Lee-Liu(C-L-L)equation using the deformation algorithm from the(1+1)-dimensional C-L-L equation.The new system is integrable with its Lax pair obtained by applying the deformation algorithm to that of the(1+1)-dimension.It is challenging to obtain the exact solutions for the new integrable system because the new system combines both the original C-L-L equation and its reciprocal transformation.The traveling wave solutions are derived in implicit function expression,and some asymmetry peakon solutions are found.
基金supported by the National Natural Science Foundation of China (Nos.52374078 and 52074043)the Fundamental Research Funds for the Central Universities (No.2023CDJKYJH021)。
文摘Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media within these rocks.Faced with the challenge of calculating the three-dimensional fractal dimensions of rock porosity,this study proposes an innovative computational process that directly calculates the three-dimensional fractal dimensions from a geometric perspective.By employing a composite denoising approach that integrates Fourier transform(FT)and wavelet transform(WT),coupled with multimodal pore extraction techniques such as threshold segmentation,top-hat transformation,and membrane enhancement,we successfully crafted accurate digital rock models.The improved box-counting method was then applied to analyze the voxel data of these digital rocks,accurately calculating the fractal dimensions of the rock pore distribution.Further numerical simulations of permeability experiments were conducted to explore the physical correlations between the rock pore fractal dimensions,porosity,and absolute permeability.The results reveal that rocks with higher fractal dimensions exhibit more complex pore connectivity pathways and a wider,more uneven pore distribution,suggesting that the ideal rock samples should possess lower fractal dimensions and higher effective porosity rates to achieve optimal fluid transmission properties.The methodology and conclusions of this study provide new tools and insights for the quantitative analysis of complex pores in rocks and contribute to the exploration of the fractal transport properties of media within rocks.
基金supported by the External Cooperation Program of Science and Technology of Fujian Province,China(2024I0016)the Fundamental Research Funds for the Central Universities(ZQN-1005).
文摘Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitations,a novel two-level serially concatenated MLC scheme,in which the bitlevels with similar reliability are bundled and transmitted together,is proposed.The proposed scheme hierarchically protects the two bit-level sets:the bitlevel sets at the higher level are sufficiently reliable and do not require excessive resources for protection,whereas only the bit-level sets at the lower level are encoded by polar codes.The proposed scheme has the advantages of low power consumption,low delay and high reliability.Moreover,an optimized constellation signal labeling rule that can enhance the performance is proposed.Finally,the superiority of the proposed scheme is validated through the theoretical analysis and simulation results.Compared with the bit interleaving coding modulation(BICM)scheme,under 256-quadrature amplitude modulation(QAM),the proposed scheme attains a performance gain of 1.0 dB while reducing the decoding complexity by 54.55%.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2021MF049,ZR2022LLZ012,and ZR2021LLZ001)。
文摘Quantum error correction technology is an important method to eliminate errors during the operation of quantum computers.In order to solve the problem of influence of errors on physical qubits,we propose an approximate error correction scheme that performs dimension mapping operations on surface codes.This error correction scheme utilizes the topological properties of error correction codes to map the surface code dimension to three dimensions.Compared to previous error correction schemes,the present three-dimensional surface code exhibits good scalability due to its higher redundancy and more efficient error correction capabilities.By reducing the number of ancilla qubits required for error correction,this approach achieves savings in measurement space and reduces resource consumption costs.In order to improve the decoding efficiency and solve the problem of the correlation between the surface code stabilizer and the 3D space after dimension mapping,we employ a reinforcement learning(RL)decoder based on deep Q-learning,which enables faster identification of the optimal syndrome and achieves better thresholds through conditional optimization.Compared to the minimum weight perfect matching decoding,the threshold of the RL trained model reaches 0.78%,which is 56%higher and enables large-scale fault-tolerant quantum computation.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province(Grant Nos.ZR2022LLZ012 and ZR2021LLZ001)the Key R&D Program of Shandong Province,China(Grant No.2023CXGC010901)。
文摘Quantum computing has the potential to solve complex problems that are inefficiently handled by classical computation.However,the high sensitivity of qubits to environmental interference and the high error rates in current quantum devices exceed the error correction thresholds required for effective algorithm execution.Therefore,quantum error correction technology is crucial to achieving reliable quantum computing.In this work,we study a topological surface code with a two-dimensional lattice structure that protects quantum information by introducing redundancy across multiple qubits and using syndrome qubits to detect and correct errors.However,errors can occur not only in data qubits but also in syndrome qubits,and different types of errors may generate the same syndromes,complicating the decoding task and creating a need for more efficient decoding methods.To address this challenge,we used a transformer decoder based on an attention mechanism.By mapping the surface code lattice,the decoder performs a self-attention process on all input syndromes,thereby obtaining a global receptive field.The performance of the decoder was evaluated under a phenomenological error model.Numerical results demonstrate that the decoder achieved a decoding accuracy of 93.8%.Additionally,we obtained decoding thresholds of 5%and 6.05%at maximum code distances of 7 and 9,respectively.These results indicate that the decoder used demonstrates a certain capability in correcting noise errors in surface codes.
基金supported by the National Natural Science Foundation of China(NSFC)with project ID 62071498the Guangdong National Science Foundation(GDNSF)with project ID 2024A1515010213.
文摘Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-medium length regime.However,this list decoding complexity becomes formidable as the decoding output list size increases.This is primarily incurred by the OSD.Addressing this challenge,this paper proposes the low complexity SCL decoding through reducing the complexity of component code decoding,and pruning the redundant SCL decoding paths.For the former,an efficient skipping rule is introduced for the OSD so that the higher order decoding can be skipped when they are not possible to provide a more likely codeword candidate.It is further extended to the OSD variant,the box-andmatch algorithm(BMA),in facilitating the component code decoding.Moreover,through estimating the correlation distance lower bounds(CDLBs)of the component code decoding outputs,a path pruning(PP)-SCL decoding is proposed to further facilitate the decoding of U-UV codes.In particular,its integration with the improved OSD and BMA is discussed.Simulation results show that significant complexity reduction can be achieved.Consequently,the U-UV codes can outperform the cyclic redundancy check(CRC)-polar codes with a similar decoding complexity.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021MF049)the Joint Fund of the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2022LLZ012 and ZR2021LLZ001)the Key Research and Development Program of Shandong Province,China(Grant No.2023CXGC010901)。
文摘Quantum error-correcting codes are essential for fault-tolerant quantum computing,as they effectively detect and correct noise-induced errors by distributing information across multiple physical qubits.The subsystem surface code with three-qubit check operators demonstrates significant application potential due to its simplified measurement operations and low logical error rates.However,the existing minimum-weight perfect matching(MWPM)algorithm exhibits high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoder based on a graph attention network(GAT),representing error syndromes as undirected graphs with edge weights,and employing a multihead attention mechanism to efficiently aggregate node features and enable parallel computation.Compared to MWPM,the GAT decoder exhibits linear growth in computational complexity,adapts to different quantum code structures,and demonstrates stronger robustness under high physical error rates.The experimental results demonstrate that the proposed decoder achieves an overall accuracy of 89.95%under various small code lattice sizes(L=2,3,4,5),with the logical error rate threshold increasing to 0.0078,representing an improvement of approximately 13.04%compared to the MWPM decoder.This result significantly outperforms traditional methods,showcasing superior performance under small code lattice sizes and providing a more efficient decoding solution for large-scale quantum error correction.
文摘Based on the theory of multibody system dynamics, the spatial kinematics analysis of the Mcpherson independent suspension widely used in the car was carried out. A practical and simpler method was provided to reduce the number of the generalized coordinates and constraint functions. By solving the nonlinear equations, the motion of any points in the whole suspension and wheel system can be predicted, including the spatial changes of the wheel alignment parameters which are of great importance to the car performances.
文摘Some dimensionality reduction (DR) approaches based on support vector machine (SVM) are proposed. But the acquirement of the projection matrix in these approaches only considers the between-class margin based on SVM while ignoring the within-class information in data. This paper presents a new DR approach, call- ed the dimensionality reduction based on SVM and LDA (DRSL). DRSL considers the between-class margins from SVM and LDA, and the within-class compactness from LDA to obtain the projection matrix. As a result, DRSL can realize the combination of the between-class and within-class information and fit the between-class and within-class structures in data. Hence, the obtained projection matrix increases the generalization ability of subsequent classification techniques. Experiments applied to classification techniques show the effectiveness of the proposed method.
文摘Two dimensional parabolic stability equations (PSE) are numerically solved using expansions in orthogonal functions in the normal direction.The Chebyshev polynomials approximation,which is a very useful form of orthogonal expansions, is applied to solving parabolic stability equations. It is shown that results of great accuracy are effectively obtained.The availability of using Chebyshev approximations in parabolic stability equations is confirmed.
文摘Principles of dimensional analysis are applied in a new interpretation of penetration of ceramic targets subjected to hypervelocity impact. The analysis results in a power series representation – in terms of inverse velocity – of normalized depth of penetration that reduces to the hydrodynamic solution at high impact velocities. Specifically considered are test data from four literature sources involving penetration of confined thick ceramic targets by tungsten long rod projectiles. The ceramics are AD-995 alumina, aluminum nitride, silicon carbide, and boron carbide.Test data can be accurately represented by the linear form of the power series, whereby the same value of a single fitting parameter applies remarkably well for all four ceramics. Comparison of the present model with others in the literature(e.g., Tate's theory) demonstrates a target resistance stress that depends on impact velocity, linearly in the limiting case. Comparison of the present analysis with recent research involving penetration of thin ceramic tiles at lower typical impact velocities confirms the importance of target properties related to fracture and shear strength at the Hugoniot Elastic Limit(HEL) only in the latter. In contrast, in the former(i.e., hypervelocity and thick target) experiments, the current analysis demonstrates dominant dependence of penetration depth only by target mass density. Such comparisons suggest transitions from microstructure-controlled to density-controlled penetration resistance with increasing impact velocity and ceramic target thickness.Production and hosting by Elsevier B.V. on behalf of China Ordnance Society.
基金financially supported by the National Basic Research Program of China,Fundamental Studies of Perovskite Solar Cells(Grant 2015CB932200)the Natural Science Foundation of China(Grant 51035063)+2 种基金Natural Science Foundation of Jiangsu Province,China(Grants 55135039 and 55135040)Jiangsu Specially-Appointed Professor program(Grant 54907024)Startup from Nanjing Tech University(Grants 3983500160,3983500151,and 44235022)
文摘Low dimensional perovskites have recently attracted much attention due to their vertical growth of crys- talline orientation, excellent film morphology, and long-term humidity, light, and heat stability, How- ever, low dimensional perovskites suffer fl'om low power conversion efficiency (PCE) with respect to their three dimensional analogues. Therefore, it is imperative to find excellent low-dimensional perovskite materials for improving the PCE. Previous work has demonstrated that bulkier organic molecules, e,g., C6Hs(CH2)2NH3+ (PEA+), CH3(CH2)3NH3+(n-BAT, iso-BA+), C2H4NH3 +, and polyethylenimine cations (PEI+), play an important role in the formation of low-dimensional perovskites. In this review, we review the recent development of low dimensional perovskites for solar cells application in terms of film preparation, photophysics, and stability of perovskites, as well as the related device structure and physics. We have also discussed the future development of low-dimensional perovskites from materials design, fabri- cation processes, and device structure.
文摘The frame of text classification system was presented. The high dimensionality in feature space for text classification was studied. The mutual information is a widely used information theoretic measure, in a descriptive way, to measure the stochastic dependency of discrete random variables. The measure method was used as a criterion to reduce high dimensionality of feature vectors in text classification on Web. Feature selections or conversions were performed by using maximum mutual information including linear and non-linear feature conversions. Entropy was used and extended to find right features commendably in pattern recognition systems. Favorable foundation would be established for text classification mining.
基金funded by the National Natural Science Foundation of China (61671250,21475064,21373260 and 21305070)the Ministry of Science and Technology of China (2013CB933802)+1 种基金Natural Science Fund for Colleges and Universities in Jiangsu Province(16KJB150032)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD,YX03002)
文摘With the rapidly increased concerns in environmental pollution, there have been urgent needs to develop fast, sensitive, low-cost and multiplexed sensing devices for the detection of environmental pollutants. Two-dimensional(2D) nanomaterials hold great promise due to their unique chemical and physical properties, which have been extensively employed to monitor the environmental pollutants combined with different detection techniques. In this review, we summarize recent advances in 2D nanomaterials-based electrochemical sensors for detecting heavy metal ions, organic compounds, pesticides, antibiotics and bacteria. We also discuss perspectives and challenges of 2D nanomaterials in environmental monitoring.
基金supported by National Natural Science Foundation of China(11101244,11271231)National Tackling Key Problems Program(20050200069)Doctorate Foundation of the Ministry of Education of China(20030422047)
文摘Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions. The electric potential is defined by an ellip- tic equation and it appears in the following three equations via the electric field intensity. The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation. A mixed finite volume element approximation, keeping physical conservation law, is used to get numerical values of the electric potential and the accuracy is improved one order. Two con- centrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences. This method can overcome numerical oscillation, dispersion and decreases computational complexity. Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened. An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations. This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device.
文摘Objective: To treat humerus fracture with three dimensional pattern and finite element analysis, providing mechanical basis for treating humerus fracture. Methods: Humerus pattern was established based on the CT images, and calculation was done by ANSYS5. 6 software. Three dimensional ten-node tetrahedron unit was selected and were divided into 2 729 nodes, 49 041 units. Distribution and amount of axial compression of humerus were analyzed when clip angle was 30°, 45°, 90° between fracture face and axial line with fixed X, Y, Z directions. Results: The distribution of stress was greatly different between fracture face and non fracture face. Stress in fracture part was fairly concentrated with incomplete symmetric distribution around the center of fracture face; Greater stress distributed in the regions 10 mm from fracture face, which was 2-3 times that of other stress regions. Conclusion: Required load must be estimated under various conditions as to select the suitable internal fixation implants during the treatment of humerus fracture, which can provide helpful stress environment for fracture healing.
基金Supported by the National Key Research and Development Program of China(2016YFC0100300)the National Natural Science Foundation of China(61402371,61771369)+1 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(2017JM6008)the Fundamental Research Funds for the Central Universities of China(3102017zy032,3102018zy020)
文摘Three high dimensional spatial standardization algorithms are used for diffusion tensor image(DTI)registration,and seven kinds of methods are used to evaluate their performances.Firstly,the template used in this paper was obtained by spatial transformation of 16 subjects by means of tensor-based standardization.Then,high dimensional standardization algorithms for diffusion tensor images,including fractional anisotropy(FA)based diffeomorphic registration algorithm,FA based elastic registration algorithm and tensor-based registration algorithm,were performed.Finally,7 kinds of evaluation methods,including normalized standard deviation,dyadic coherence,diffusion cross-correlation,overlap of eigenvalue-eigenvector pairs,Euclidean distance of diffusion tensor,and Euclidean distance of the deviatoric tensor and deviatoric of tensors,were used to qualitatively compare and summarize the above standardization algorithms.Experimental results revealed that the high-dimensional tensor-based standardization algorithms perform well and can maintain the consistency of anatomical structures.
基金financially supported by the Special Scientific Research Fund for Public Service Sectors of Forestry(Grant No.201504603)Science and Technology Projects of Fujian Province(2014NZ003)the National Natural Science Foundation of China(Grant Nos.31370560,31170520)
文摘Wood has no inherent natural resistance against agents of biodegradation. We evaluated the effects of metal bath heat treatment(MBHT) on decay resistance and dimensional stability of Chinese parasol(Firmiana simplex) and Chinese fir(Cunninghamia lanceolata) wood. A low melting point alloy was used as heating medium in the treatment of the wood samples at 150, 180, and 210 °C for2, 4, and 8 h. Heat-treated and control samples were exposed to brown rot fungus(Poria placenta) and white rot fungus(Coriolus versicolor) for decay resistance testing and anti-swelling efficiency(ASE). The improved decay resistance with increase temperatures with low mass losses of 7.3 and 7.3% for F. simplex, and 3.9 and 3.6% for C.lanceolata at 210 °C for 8 h against Coriolus versicolor and Poria placenta, respectively. ASE indicated that MBHT contributed to improved dimensional stability of both wood species after treatment. Scanning electron micrograph results indicate that metal bath-treated samples showed strong decay resistance. Therefore, our approach to thermally modify wood should be explored to overcome the energy utilization by using low melting point alloy for the heat treatment of wood.