A joined failure mechanism of translation and rotation was proposed for the stability analysis of deep tunnel face, and the upper bound solution of supporting force of deep tunnel was calculated under pore water press...A joined failure mechanism of translation and rotation was proposed for the stability analysis of deep tunnel face, and the upper bound solution of supporting force of deep tunnel was calculated under pore water pressure. The calculations were based on limit analysis method of upper bound theory, with the employment of non-associated Mohr-Coulomb flow rule. Nonlinear failure criterion was adopted. Optimized analysis was conducted for the effects of the tunnel depth, pore water pressure coefficient, the initial cohesive force and nonlinear coefficient on supporting force. The upper bound solutions are obtained by optimum method. Results are listed and compared with the previously published solutions for the verification of correctness and effectiveness. The failure shapes are presented, and results are discussed for different pore water pressure coefficients and nonlinear coefficients of tunnel face.展开更多
针对调谐质量阻尼器(Tuned Mass Damper,TMD)通常需要较大的附加质量,安装空间受限以及质量块运动时需要较大的行程等问题,基于平动‐转动运动形式相互转化和能量守恒原理,本文提出了利用转动惯量虚拟平动惯性质量的TMD控制系统(Rotary ...针对调谐质量阻尼器(Tuned Mass Damper,TMD)通常需要较大的附加质量,安装空间受限以及质量块运动时需要较大的行程等问题,基于平动‐转动运动形式相互转化和能量守恒原理,本文提出了利用转动惯量虚拟平动惯性质量的TMD控制系统(Rotary inertia virtualizing translational mass based Tuned Mass Damper,简称RTMD),进行RTMD控制系统的设计概念,以单自由度结构对象为例建立了附加RTMD控制系统的运动方程,分析了RTMD控制系统参数对结构振动控制效果的影响规律。结果表明控制效果与系统的质量比、惯质比、阻尼比等参数密切相关,相关规律也可以推广到一般多自由度结构体系一阶振动的调谐吸振减振控制。进行了模型振动台试验研究,时域分析和频域分析结果均表明,试验结果与基于理论模型的数值分析结果一致性良好,验证了RTMD控制系统理论模型的正确性、设计参数的合理性以及控制系统应用于实际问题的可行性。展开更多
基金Project(2013CB036004)supported by National Basic Research Program of ChinaProjects(51178468+2 种基金51378510)supported by the National Natural Science Foundation of ChinaProject(2015zzts061)supported by the Fundamental Research Funds for the Central UniversitiesChina
文摘A joined failure mechanism of translation and rotation was proposed for the stability analysis of deep tunnel face, and the upper bound solution of supporting force of deep tunnel was calculated under pore water pressure. The calculations were based on limit analysis method of upper bound theory, with the employment of non-associated Mohr-Coulomb flow rule. Nonlinear failure criterion was adopted. Optimized analysis was conducted for the effects of the tunnel depth, pore water pressure coefficient, the initial cohesive force and nonlinear coefficient on supporting force. The upper bound solutions are obtained by optimum method. Results are listed and compared with the previously published solutions for the verification of correctness and effectiveness. The failure shapes are presented, and results are discussed for different pore water pressure coefficients and nonlinear coefficients of tunnel face.
文摘针对调谐质量阻尼器(Tuned Mass Damper,TMD)通常需要较大的附加质量,安装空间受限以及质量块运动时需要较大的行程等问题,基于平动‐转动运动形式相互转化和能量守恒原理,本文提出了利用转动惯量虚拟平动惯性质量的TMD控制系统(Rotary inertia virtualizing translational mass based Tuned Mass Damper,简称RTMD),进行RTMD控制系统的设计概念,以单自由度结构对象为例建立了附加RTMD控制系统的运动方程,分析了RTMD控制系统参数对结构振动控制效果的影响规律。结果表明控制效果与系统的质量比、惯质比、阻尼比等参数密切相关,相关规律也可以推广到一般多自由度结构体系一阶振动的调谐吸振减振控制。进行了模型振动台试验研究,时域分析和频域分析结果均表明,试验结果与基于理论模型的数值分析结果一致性良好,验证了RTMD控制系统理论模型的正确性、设计参数的合理性以及控制系统应用于实际问题的可行性。