期刊文献+
共找到264,951篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-objective optimization of grinding process parameters for improving gear machining precision
1
作者 YOU Tong-fei HAN Jiang +4 位作者 TIAN Xiao-qing TANG Jian-ping LU Yi-guo LI Guang-hui XIA Lian 《Journal of Central South University》 2025年第2期538-551,共14页
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus... The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods. 展开更多
关键词 worm wheel gear grinding machine gear machining precision machining process parameters multi objective optimization
在线阅读 下载PDF
Physics-informed machine learning model for prediction of ground reflected wave peak overpressure
2
作者 Haoyu Zhang Yuxin Xu +1 位作者 Lihan Xiao Canjie Zhen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第11期119-133,共15页
The accurate prediction of peak overpressure of explosion shockwaves is significant in fields such as explosion hazard assessment and structural protection, where explosion shockwaves serve as typical destructive elem... The accurate prediction of peak overpressure of explosion shockwaves is significant in fields such as explosion hazard assessment and structural protection, where explosion shockwaves serve as typical destructive elements. Aiming at the problem of insufficient accuracy of the existing physical models for predicting the peak overpressure of ground reflected waves, two physics-informed machine learning models are constructed. The results demonstrate that the machine learning models, which incorporate physical information by predicting the deviation between the physical model and actual values and adding a physical loss term in the loss function, can accurately predict both the training and out-oftraining dataset. Compared to existing physical models, the average relative error in the predicted training domain is reduced from 17.459%-48.588% to 2%, and the proportion of average relative error less than 20% increased from 0% to 59.4% to more than 99%. In addition, the relative average error outside the prediction training set range is reduced from 14.496%-29.389% to 5%, and the proportion of relative average error less than 20% increased from 0% to 71.39% to more than 99%. The inclusion of a physical loss term enforcing monotonicity in the loss function effectively improves the extrapolation performance of machine learning. The findings of this study provide valuable reference for explosion hazard assessment and anti-explosion structural design in various fields. 展开更多
关键词 Blast shock wave Peak overpressure machine learning Physics-informed machine learning
在线阅读 下载PDF
Machine learning models for optimization, validation, and prediction of light emitting diodes with kinetin based basal medium for in vitro regeneration of upland cotton (Gossypium hirsutum L.)
3
作者 ÖZKAT Gözde Yalçın AASIM Muhammad +2 位作者 BAKHSH Allah ALI Seyid Amjad ÖZCAN Sebahattin 《Journal of Cotton Research》 2025年第2期228-241,共14页
Background Plant tissue culture has emerged as a tool for improving cotton propagation and genetics,but recalcitrance nature of cotton makes it difficult to develop in vitro regeneration.Cotton’s recalcitrance is inf... Background Plant tissue culture has emerged as a tool for improving cotton propagation and genetics,but recalcitrance nature of cotton makes it difficult to develop in vitro regeneration.Cotton’s recalcitrance is influenced by genotype,explant type,and environmental conditions.To overcome these issues,this study uses different machine learning-based predictive models by employing multiple input factors.Cotyledonary node explants of two commercial cotton cultivars(STN-468 and GSN-12)were isolated from 7–8 days old seedlings,preconditioned with 5,10,and 20 mg·L^(-1) kinetin(KIN)for 10 days.Thereafter,explants were postconditioned on full Murashige and Skoog(MS),1/2MS,1/4MS,and full MS+0.05 mg·L^(-1) KIN,cultured in growth room enlightened with red and blue light-emitting diodes(LED)combination.Statistical analysis(analysis of variance,regression analysis)was employed to assess the impact of different treatments on shoot regeneration,with artificial intelligence(AI)models used for confirming the findings.Results GSN-12 exhibited superior shoot regeneration potential compared with STN-468,with an average of 4.99 shoots per explant versus 3.97.Optimal results were achieved with 5 mg·L^(-1) KIN preconditioning,1/4MS postconditioning,and 80%red LED,with maximum of 7.75 shoot count for GSN-12 under these conditions;while STN-468 reached 6.00 shoots under the conditions of 10 mg·L^(-1) KIN preconditioning,MS with 0.05 mg·L^(-1) KIN(postconditioning)and 75.0%red LED.Rooting was successfully achieved with naphthalene acetic acid and activated charcoal.Additionally,three different powerful AI-based models,namely,extreme gradient boost(XGBoost),random forest(RF),and the artificial neural network-based multilayer perceptron(MLP)regression models validated the findings.Conclusion GSN-12 outperformed STN-468 with optimal results from 5 mg·L^(-1) KIN+1/4MS+80%red LED.Application of machine learning-based prediction models to optimize cotton tissue culture protocols for shoot regeneration is helpful to improve cotton regeneration efficiency. 展开更多
关键词 machine learning COTTON In vitro regeneration Light emitting diodes OPTIMIZATION KINETIN
在线阅读 下载PDF
Comparative analysis of machine learning and statistical models for cotton yield prediction in major growing districts of Karnataka,India
4
作者 THIMMEGOWDA M.N. MANJUNATHA M.H. +4 位作者 LINGARAJ H. SOUMYA D.V. JAYARAMAIAH R. SATHISHA G.S. NAGESHA L. 《Journal of Cotton Research》 2025年第1期40-60,共21页
Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,su... Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,such as textile,medicine,and automobile industries,it has greater commercial importance.The crop’s performance is greatly influenced by prevailing weather dynamics.As climate changes,assessing how weather changes affect crop performance is essential.Among various techniques that are available,crop models are the most effective and widely used tools for predicting yields.Results This study compares statistical and machine learning models to assess their ability to predict cotton yield across major producing districts of Karnataka,India,utilizing a long-term dataset spanning from 1990 to 2023 that includes yield and weather factors.The artificial neural networks(ANNs)performed superiorly with acceptable yield deviations ranging within±10%during both vegetative stage(F1)and mid stage(F2)for cotton.The model evaluation metrics such as root mean square error(RMSE),normalized root mean square error(nRMSE),and modelling efficiency(EF)were also within the acceptance limits in most districts.Furthermore,the tested ANN model was used to assess the importance of the dominant weather factors influencing crop yield in each district.Specifically,the use of morning relative humidity as an individual parameter and its interaction with maximum and minimum tempera-ture had a major influence on cotton yield in most of the yield predicted districts.These differences highlighted the differential interactions of weather factors in each district for cotton yield formation,highlighting individual response of each weather factor under different soils and management conditions over the major cotton growing districts of Karnataka.Conclusions Compared with statistical models,machine learning models such as ANNs proved higher efficiency in forecasting the cotton yield due to their ability to consider the interactive effects of weather factors on yield forma-tion at different growth stages.This highlights the best suitability of ANNs for yield forecasting in rainfed conditions and for the study on relative impacts of weather factors on yield.Thus,the study aims to provide valuable insights to support stakeholders in planning effective crop management strategies and formulating relevant policies. 展开更多
关键词 COTTON machine learning models Statistical models Yield forecast Artificial neural network Weather variables
在线阅读 下载PDF
Managing cotton canopy architecture for machine picking cotton via high plant density and plant growth retardants
5
作者 LAKSHMANAN Sankar SOMASUNDARAM Selvaraj +4 位作者 SHRI RANGASAMI Silambiah ANANTHARAJU Pokkharu VIJAYALAKSHMI Dhashnamurthi RAGAVAN Thiruvengadam DHAMODHARAN Paramasivam 《Journal of Cotton Research》 2025年第1期102-114,共13页
Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planti... Machine picking in cotton is an emerging practice in India,to solve the problems of labour shortages and production costs increasing.Cotton production has been declining in recent years;however,the high density planting system(HDPS)offers a viable method to enhance productivity by increasing plant populations per unit area,optimizing resource utilization,and facilitating machine picking.Cotton is an indeterminate plant that produce excessive vegeta-tive growth in favorable soil fertility and moisture conditions,which posing challenges for efficient machine picking.To address this issue,the application of plant growth retardants(PGRs)is essential for controlling canopy architecture.PGRs reduce internode elongation,promote regulated branching,and increase plant compactness,making cotton plants better suited for machine picking.PGRs application also optimizes photosynthates distribution between veg-etative and reproductive growth,resulting in higher yields and improved fibre quality.The integration of HDPS and PGRs applications results in an optimal plant architecture for improving machine picking efficiency.However,the success of this integration is determined by some factors,including cotton variety,environmental conditions,and geographical variations.These approaches not only address yield stagnation and labour shortages but also help to establish more effective and sustainable cotton farming practices,resulting in higher cotton productivity. 展开更多
关键词 COTTON High density planting system Plant growth retardant Canopy management Defoliators machine picking Yield improvement
在线阅读 下载PDF
An empirical study on the effect of user engagement on personalized free-content promotion based on a causal machine learning model
6
作者 Shuang Wang Hanbing Xue Lizheng Wang 《中国科学技术大学学报》 CSCD 北大核心 2024年第10期51-62,I0007,共13页
Many digital platforms have employed free-content promotion strategies to deal with the high uncertainty levels regarding digital content products.However,the diversity of digital content products and user heterogenei... Many digital platforms have employed free-content promotion strategies to deal with the high uncertainty levels regarding digital content products.However,the diversity of digital content products and user heterogeneity in content preference may blur the impact of platform promotions across users and products.Therefore,free-content promotion strategies should be adapted to allocate marketing resources optimally and increase revenue.This study develops personal-ized free-content promotion strategies based on individual-level heterogeneous treatment effects and explores the causes of their heterogeneity,focusing on the moderating effect of user engagement-related variables.To this end,we utilize ran-dom field experimental data provided by a top Chinese e-book platform.We employ a framework that combines machine learning with econometric causal inference methods to estimate individual treatment effects and analyze their potential mechanisms.The analysis shows that,on average,free-content promotions lead to a significant increase in consumer pay-ments.However,the higher the level of user engagement,the lower the payment lift caused by promotions,as more-engaged users are more strongly affected by the cannibalization effect of free-content promotion.This study introduces a novel causal research design to help platforms improve their marketing strategies. 展开更多
关键词 free-content promotion user engagement random experiment causal machine learning individual-level treat-ment effect
在线阅读 下载PDF
A physics-informed machine learning solution for landslide susceptibility mapping based on three-dimensional slope stability evaluation
7
作者 WANG Yun-hao WANG Lu-qi +4 位作者 ZHANG Wen-gang LIU Song-lin SUN Wei-xin HONG Li ZHU Zheng-wei 《Journal of Central South University》 CSCD 2024年第11期3838-3853,共16页
Landslide susceptibility mapping is a crucial tool for disaster prevention and management.The performance of conventional data-driven model is greatly influenced by the quality of the samples data.The random selection... Landslide susceptibility mapping is a crucial tool for disaster prevention and management.The performance of conventional data-driven model is greatly influenced by the quality of the samples data.The random selection of negative samples results in the lack of interpretability throughout the assessment process.To address this limitation and construct a high-quality negative samples database,this study introduces a physics-informed machine learning approach,combining the random forest model with Scoops 3D,to optimize the negative samples selection strategy and assess the landslide susceptibility of the study area.The Scoops 3D is employed to determine the factor of safety value leveraging Bishop’s simplified method.Instead of conventional random selection,negative samples are extracted from the areas with a high factor of safety value.Subsequently,the results of conventional random forest model and physics-informed data-driven model are analyzed and discussed,focusing on model performance and prediction uncertainty.In comparison to conventional methods,the physics-informed model,set with a safety area threshold of 3,demonstrates a noteworthy improvement in the mean AUC value by 36.7%,coupled with a reduced prediction uncertainty.It is evident that the determination of the safety area threshold exerts an impact on both prediction uncertainty and model performance. 展开更多
关键词 machine learning physics-informed model negative samples selection INTERPRETABILITY landslide susceptibility mapping
在线阅读 下载PDF
基于TGA-IST-GC-MS协同TGA和GC-MS评价香料的热稳定性及香气释放特征 被引量:1
8
作者 朱龙杰 王蕙婷 +6 位作者 吴昌健 张华 朱君 叶远青 曹毅 殷志琦 朱怀远 《食品科学》 北大核心 2025年第4期201-208,共8页
为更好地评估香料的热稳定性,提升香料的使用价值,通过热重分析-样品存储接口-气相色谱-质谱(thermogravimetric analysis-sample storage interface-gas chromatography-mass spectrometry,TGA-IST-GC-MS)联用法辅以TGA和GC-MS建立香... 为更好地评估香料的热稳定性,提升香料的使用价值,通过热重分析-样品存储接口-气相色谱-质谱(thermogravimetric analysis-sample storage interface-gas chromatography-mass spectrometry,TGA-IST-GC-MS)联用法辅以TGA和GC-MS建立香料热稳定性的统一评价方法。首先根据香料的挥发特性,利用TGA获得最佳进样温度,然后使用GC-MS和TGA-IST-GC-MS在不同体系下分别获得常规GC-MS图和TGA-GC-MS图,通过2种色谱图对比计算得到香料热稳定性的稳定度、裂解度和碎裂度3个重要指标,最后再依据热稳定性对香料加热前后的香气变化进行考察。结果表明:以香料挥发时的最大质量损失速率峰温度作为TGA-IST-GC-MS的最佳进样温度,方法具有较高的响应强度和较好的重复性;通过2种GC-MS图的对比,有效降低了香料基质背景的影响,提高了方法的准确性,使其对单体香料和多组分天然香料都具有较好的适用性;依据热稳定性的3个指标,可进一步掌握香料受热反应时的裂解强度和新裂解产物的生成量,对香气评价具有较好的实用性和指导性。 展开更多
关键词 热重分析-样品存储接口-气相色谱-质谱 香料 热稳定性 裂解产物 香气评价
在线阅读 下载PDF
基于顶空-固相微萃取-气相色谱-质谱和顶空-气相色谱-离子迁移谱技术结合化学计量法分析芜菁冻干片挥发性成分 被引量:1
9
作者 岳丽 张英仙 +4 位作者 祖力皮牙·买买提 王佳敏 毛红艳 于明 热依拉木·海力力 《食品与发酵工业》 北大核心 2025年第2期300-310,共11页
为探究不同品种芜菁冻干片中挥发性有机物(volatile organic compounds,VOCs)的差异,采用顶空-固相微萃取-气相色谱-质谱(headspace solid phase microextraction gas chromatography-mass spectrometry,HS-SPME-GC-MS)和顶空-气相色谱... 为探究不同品种芜菁冻干片中挥发性有机物(volatile organic compounds,VOCs)的差异,采用顶空-固相微萃取-气相色谱-质谱(headspace solid phase microextraction gas chromatography-mass spectrometry,HS-SPME-GC-MS)和顶空-气相色谱-离子迁移谱(headspace gas chromatography-ion mobility spectrometry,HS-GC-IMS)对紫色、黄色和白色3种芜菁冻干片的VOCs进行分析,并结合主成分分析(principal component analysis,PCA)和偏最小二乘判别法(partial least squares-discriminant analysis,PLS-DA)等化学计量法探究不同品种芜菁冻干片挥发性成分的差异。结果表明,通过HS-SPME-GC-MS共解析出96种VOCs,包括醛类、醇类、酮类、含硫化合物、酯类、酸类等化合物,其中含硫化合物和酯类为芜菁冻干片中相对含量最高的化合物种类;HS-GC-IMS共解析出94种VOCs,包括醛类、酯类、酮类及含硫化合物等挥发性成分。HS-SPME-GC-MS和HS-GC-IMS检出的挥发性物质种类和含量存在差异,共有VOCs有15种,二者结果互为补充,结合使用可以较全面系统地表征芜菁冻干片的挥发性成分。PCA和PLS-DA结果表明,2种方法均能够有效区分3种芜菁冻干片。通过变量投影重要度分别筛选了59种和23种差异VOCs,该结果可为芜菁冻干片VOCs的差异分析提供参考方法。 展开更多
关键词 芜菁冻干片 挥发性有机物 顶空-固相微萃取-气相色谱-质谱 顶空-气相色谱-离子迁移谱 变量投影重要度
在线阅读 下载PDF
应力-渗流-溶蚀耦合作用下三维岩石裂隙渗透特性数值计算研究 被引量:2
10
作者 申林方 吕倩文 +3 位作者 刘文连 张家明 杨鸿忠 李泽 《岩土工程学报》 北大核心 2025年第2期428-437,共10页
基于格子Boltzmann方法采用双分布函数分别模拟渗流速度场与溶质浓度场的演化过程,建立了三维岩石裂隙应力-渗流-溶蚀耦合作用机制的数值计算模型,并讨论了渗流流速、法向应力、溶蚀反应速率等因素对裂隙渗透特性演化规律的影响。结果表... 基于格子Boltzmann方法采用双分布函数分别模拟渗流速度场与溶质浓度场的演化过程,建立了三维岩石裂隙应力-渗流-溶蚀耦合作用机制的数值计算模型,并讨论了渗流流速、法向应力、溶蚀反应速率等因素对裂隙渗透特性演化规律的影响。结果表明:在渗流流速较低时,壁面溶蚀出来的离子得不到及时输运,使得出口处浓度较高溶蚀速度慢,裂隙结构呈“喇叭口”状。增大法向应力会减小裂隙开度,减慢溶质的运移速率,使得裂隙出口处的溶蚀速率显著降低,从而限制了其渗透率的发展。当壁面溶蚀反应速率较小时,裂隙渗透率呈持续缓慢增长的状态;随着溶蚀反应速率增加,出口处的溶蚀量会明显小于入口处,导致出口处壁面发生显著溶蚀之前,裂隙渗透率发展缓慢,此后渗透率便呈急速突变增长趋势。研究成果能够为酸蚀作用下岩石裂隙渗透能力的定量评价提供重要理论支撑。 展开更多
关键词 岩石裂隙 应力-渗流-溶蚀耦合 渗透特性 格子BOLTZMANN方法 数值计算
在线阅读 下载PDF
黄芪-莪术-蚤休配伍调控PINK1/Parkin信号通路抑制小鼠结肠癌生长转移的研究 被引量:1
11
作者 陈思 梁众擎 +5 位作者 苏婷婷 张慧兰 梁研 祁恒奕 陈怀祖 唐德才 《南京中医药大学学报》 北大核心 2025年第4期473-482,共10页
目的探讨黄芪-莪术-蚤休(芪-术-蚤)角药配伍基于PINK1/Parkin/EMT信号通路抑制结肠癌生长和转移的影响。方法30只BALB/c雄性小鼠,随机分为空白组、模型组、阳性对照组、芪-术-蚤高剂量组(5.85 g·kg^(-1))、芪-术-蚤低剂量组(2.925 ... 目的探讨黄芪-莪术-蚤休(芪-术-蚤)角药配伍基于PINK1/Parkin/EMT信号通路抑制结肠癌生长和转移的影响。方法30只BALB/c雄性小鼠,随机分为空白组、模型组、阳性对照组、芪-术-蚤高剂量组(5.85 g·kg^(-1))、芪-术-蚤低剂量组(2.925 g·kg^(-1)),每组6只,使用结肠癌CT26.WT细胞构建小鼠原位结肠癌模型。给药15 d后,取各组小鼠肿瘤、肝脏组织,HE病理染色评估肿瘤转移情况,透射电镜观察肿瘤组织线粒体自噬现象,Western blot、免疫组化(IHC)检测线粒体自噬相关蛋白PINK1、Parkin、p62、LC3-Ⅱ/LC3-Ⅰ表达情况,Western blot、qPCR、IHC检测EMT相关E-cadherin、N-cadherin、Vimentin、Snail蛋白和mRNA表达情况。结果与模型组相比,给药组小鼠肿瘤体积明显变小、转移灶数目变少,肝脏组织发生改变,小鼠生长状态得到明显改善;芪-术-蚤给药组肿瘤组织线粒体发生了选择性自噬现象,伴随着自噬小体的产生;芪-术-蚤给药组影响了PINK1/Parkin通路介导的线粒体自噬生物学过程:PINK1、Parkin、p62、LC3-Ⅱ/LC3-Ⅰ均有一定程度上调(P<0.05,P<0.01),且高剂量组效果优于低剂量组(P<0.05,P<0.01);芪-术-蚤给药组降低了EMT相关N-cadherin、Vimentin、Snail的蛋白含量与mRNA水平(P<0.05,P<0.01),同时增高了E-cadherin的蛋白与mRNA水平(P<0.05,P<0.01),且高剂量组均优于低剂量组(P<0.05,P<0.01)。结论芪-术-蚤角药配伍一定程度抑制结肠癌原位移植瘤小鼠模型肿瘤生长和转移,其机制可能是通过PINK1/Parkin信号通路扭转线粒体功能异常,抑制上皮-间质转化(EMT)过程,达到治疗结肠癌的作用。 展开更多
关键词 -- 线粒体自噬 PINK1/Parkin信号通路 上皮-间质转化 结肠癌
在线阅读 下载PDF
多类混凝土损伤比强度理论及塑性-损伤模型研究进展与应用 被引量:1
12
作者 丁发兴 吴霞 +7 位作者 吕飞 王文君 孙浩 SADAT Said Ikram 许云龙 王恩 王莉萍 余志武 《铁道科学与工程学报》 北大核心 2025年第2期690-711,共22页
为完善混凝土强度理论和塑性-损伤模型,通过参考岩石损伤比强度理论,根据现有普通混凝土、再生混凝土、轻骨料混凝土和纤维混凝土等多类混凝土多轴强度试验数据,推荐损伤比变量中的五经验系数取值,完善多类混凝土损伤比强度理论并揭示... 为完善混凝土强度理论和塑性-损伤模型,通过参考岩石损伤比强度理论,根据现有普通混凝土、再生混凝土、轻骨料混凝土和纤维混凝土等多类混凝土多轴强度试验数据,推荐损伤比变量中的五经验系数取值,完善多类混凝土损伤比强度理论并揭示约束混凝土工作原理。分析表明,随着静水压力的增加,混凝土压损伤比将由单轴受压时为1左右线性递减至小于0.5,八面体剪应力先增大后减小,轴向峰值应力提升为某一定值,压损伤比取值减小引发非弹性体积膨胀减小至不变,因而导致混凝土由单轴受压脆性破坏向多轴受压塑性破坏转变,该理论为钢管混凝土柱中发挥混凝土耗能潜力提供理论依据。依据混凝土损伤比强度理论,确定多类混凝土塑性-损伤模型中的三轴强度参数,包括膨胀角、拉压子午线强度比值和二轴等压与单轴抗压强度比值,并建议常温静力荷载下多类混凝土的单轴受压、受拉应力-应变曲线方程及其参数表达式,常温地震荷载下普通混凝土的单轴受压、受拉应力-应变曲线方程及其参数表达式,以及火灾升温环境下普通混凝土的单轴受压、受拉应力-应变曲线方程及其参数表达式,建立约束混凝土三轴塑性-损伤模型。介绍多类混凝土塑性-损伤模型在钢-混凝土组合结构有限元模型中的应用,模型中混凝土采用实体单元而钢管与钢梁采用壳单元,可模拟钢管与混凝土之间的界面滑移与约束作用,当采取增强约束拉筋强柱构造方法时可提升钢管混凝土柱及其结构的承载力、抗震与抗火性能。 展开更多
关键词 混凝土 损伤比 强度理论 塑性-损伤模型 三轴参数 应力-应变曲线 实体-壳单元模型
在线阅读 下载PDF
双偶氮苯-二苯并[b,i]噻蒽-[2,3-b]苯-5,7,12,14-四酮衍生物分子的二阶非线性光学性质 被引量:1
13
作者 张宇红 李博 +4 位作者 陈自然 李渊 徐友辉 张莉萍 何旭东 《原子与分子物理学报》 CAS 北大核心 2025年第2期15-23,共9页
使用密度泛函理论(DFT)M06-2X方法、采用6-311+g(d,p)基组,分别对26个双偶氮-二苯并[b,i]噻蒽-[2,3-b]苯-5,7,12,14-四酮衍生物分子进行结构优化与频率计算;使用含时密度泛函理论(TD-DFT)TD-M06-2X方法计算了a1~d6分子的前线分子轨道与... 使用密度泛函理论(DFT)M06-2X方法、采用6-311+g(d,p)基组,分别对26个双偶氮-二苯并[b,i]噻蒽-[2,3-b]苯-5,7,12,14-四酮衍生物分子进行结构优化与频率计算;使用含时密度泛函理论(TD-DFT)TD-M06-2X方法计算了a1~d6分子的前线分子轨道与电子吸收光谱,采用有效场FF方法研究了二阶非线性光学性质(NLO).研究结果表明,26个噻蒽四酮类衍生物分子的能隙在1.33—2.02 eV范围,归属于有机半导体;最低能量吸收峰波长在601.8~609.5nm范围;在增大分子的二阶非线性光学系数β_(μ)(或β_(0))值方面,含相同偶氮苯基团或含不同偶氮苯基团分别引入到二苯并[b,i]噻蒽-[2,3-b]苯-5,7,12,14-四酮分子两侧的2,10位优于2,9位,在2,10位分别端接含推、拉基团的偶氮苯优于含相同给电子基团的偶氮苯.在偶氮苯苯环对位分别端接强吸电子基(-NO_(2))与强供电子基(如-N(CH_(3))_(2)、-N(Ph)_(3)、-N-苯基咔唑等)可增强体系的二阶非线性光学性能,获得性能良好的非线性光学材料. 展开更多
关键词 双偶氮 二苯并[b i]噻蒽-[2 3-b]苯-5 7 12 14-四酮 密度泛函理论 电子吸收光谱 二阶非线性光学性质
在线阅读 下载PDF
长三角地区“产-才-城”适配的时空演化及影响因素研究 被引量:2
14
作者 黄永春 周炯岚 +1 位作者 李娜 宫尚俊 《华东经济管理》 北大核心 2025年第4期9-20,共12页
在长三角一体化发展中,产业、人才和城市的融合协调是推进区域高质量发展的重要途径。文章根据2011—2022年长三角地区41个城市数据,探索“产-才-城”适配度的时空格局演化趋势及其影响因素。结果表明:在时间趋势上,长三角地区“产-才-... 在长三角一体化发展中,产业、人才和城市的融合协调是推进区域高质量发展的重要途径。文章根据2011—2022年长三角地区41个城市数据,探索“产-才-城”适配度的时空格局演化趋势及其影响因素。结果表明:在时间趋势上,长三角地区“产-才-城”适配度呈稳定增长态势,多极化现象渐显;在空间分异中,呈“西低东高”的地域差异,形成以长三角核心城市为主的高水平聚集带。同时,“产-才-城”适配度的空间自相关显著为正,具有空间俱乐部收敛特征。影响因素分析显示,社会保障能力和金融发展水平是提升“产-才-城”适配度的关键因素,对外贸易水平、科技支出水平和政府调控能力的作用稍弱,且存在地域差异。 展开更多
关键词 长三角一体化 “产--城”适配 时空演化 耦合协调
在线阅读 下载PDF
基于《中国医疗机构药品评价与遴选快速指南(第二版)》的原研钠-葡萄糖协同转运蛋白2抑制剂综合评价 被引量:2
15
作者 计成 周兵 +8 位作者 朱鹏里 王超 钟询龙 沈爱宗 张弋 王若伦 葛卫红 董占军 赵志刚 《医药导报》 北大核心 2025年第2期251-258,共8页
目的基于《中国医疗机构药品评价与遴选快速指南(第二版)》,对原研钠-葡萄糖协同转运蛋白2(SGLT-2)抑制剂进行临床综合评价,以期为不同患者制定个体化治疗方案提供参考和依据,优化SGLT-2抑制剂类降糖药临床使用路径。方法收集整理参评... 目的基于《中国医疗机构药品评价与遴选快速指南(第二版)》,对原研钠-葡萄糖协同转运蛋白2(SGLT-2)抑制剂进行临床综合评价,以期为不同患者制定个体化治疗方案提供参考和依据,优化SGLT-2抑制剂类降糖药临床使用路径。方法收集整理参评药物相关真实世界研究、随机对照试验、Meta分析/系统综述、药品临床使用指南、专家共识及药品说明书等文献资料,依据SGLT-2抑制剂药品特点修改评价维度,整体从药学特性、有效性、安全性、经济性及其他属性共5个维度对纳入的药品进行综合评价。结果所有参评原研SGLT-2抑制剂评价得分均>75分,其中达格列净片得分最高,为84.6分;脯氨酸恒格列净得分最低,为75.1分。结论5种原研SGLT-2抑制剂均表现出良好的临床效用,区别在于参评原研药品在临床使用中存在不同的优势区间。达格列净临床效用最理想,临床使用应更加安全有效。可能由于上市时间短,循证依据不足的等原因,脯氨酸恒格列净相比于其他参评药品临床使用优势不明显。 展开更多
关键词 -葡萄糖协同转运蛋白-2抑制剂 达格列净 恩格列净 卡格列净 艾托格列净 脯氨酸恒格列净 综合评价
在线阅读 下载PDF
基于“微生物-肠-脑轴”探讨补肾通腑方对APP/PS1小鼠肠道菌群及LPS/TLR4/NF-κB通路的影响 被引量:2
16
作者 王旭 张杰 +2 位作者 赵敏 宋晓雨 段建平 《中国药理学通报》 CAS 北大核心 2025年第1期171-178,共8页
目的探讨补肾通腑方调控肠道菌群,改善阿尔茨海默病(Alzheimer’s disease,AD)模型小鼠学习记忆能力的作用机制。方法以APP/PS1小鼠为研究对象,给予补肾通腑方治疗8周,采用Morris水迷宫法观察小鼠空间学习记忆能力变化;16S rDNA检测小... 目的探讨补肾通腑方调控肠道菌群,改善阿尔茨海默病(Alzheimer’s disease,AD)模型小鼠学习记忆能力的作用机制。方法以APP/PS1小鼠为研究对象,给予补肾通腑方治疗8周,采用Morris水迷宫法观察小鼠空间学习记忆能力变化;16S rDNA检测小鼠肠道菌群丰度、多样性变化;HE染色观察海马病理形态学变化;免疫荧光检测海马区小胶质细胞活化情况;Western blot检测TLR4、NF-κB、IL-6等炎症因子表达。结果与模型组相比,补肾通腑方可以缩短AD模型小鼠逃避潜伏期、游泳路径,增加跨越平台次数(P<0.05),提升肠道菌群多样性,调节肠道菌群丰度,促进海马神经元细胞损伤修复,降低iNOS/Iba1共表达,提高Arg1/Iba1共表达(P<0.01),促进小胶质细胞从M1型向M2型转化,下调TLR4、NF-κB、IL-6等促炎因子的表达。结论补肾通腑方改善AD模型小鼠学习记忆能力的作用机制可能与调节肠道菌群介导的LPS/TLR4/NF-κB通路,从而抑制促炎型小胶质细胞活化、减轻中枢神经系统炎症、改善海马区神经元细胞损伤有关。 展开更多
关键词 阿尔茨海默病 补肾通腑方 肠道菌群 LPS/TLR4/NF-κB通路 16S rDNA 微生物--脑轴
在线阅读 下载PDF
降碳-减污-扩绿-增长耦合协调发展的时空演变及影响因素 被引量:1
17
作者 张庆红 姜祎 《统计与决策》 北大核心 2025年第11期90-94,共5页
协同推进降碳、减污、扩绿、增长是目前我国生态文明建设的重要战略任务。文章基于2009—2022年我国30个省份的面板数据,使用熵值法、耦合协调度模型测度降碳-减污-扩绿-增长耦合协调度,并分析其时空演变特征,结合XGBoost算法和SHAP值... 协同推进降碳、减污、扩绿、增长是目前我国生态文明建设的重要战略任务。文章基于2009—2022年我国30个省份的面板数据,使用熵值法、耦合协调度模型测度降碳-减污-扩绿-增长耦合协调度,并分析其时空演变特征,结合XGBoost算法和SHAP值解释算法识别协同推进降碳-减污-扩绿-增长的主要影响因素。结果表明:降碳、减污、扩绿、增长四个系统的耦合协调度呈上升趋势,总体经历了“勉强协调→初级协调”的演变;扩绿与增长间的耦合协调度较低,亟待加强生态绿化工作;绿色创新是协同推进降碳-减污-扩绿-增长的主要影响因素,能源消费强度在整体上对降碳-减污-扩绿-增长协同发展产生负向影响;人口密度、产业结构、政府干预、绿色金融对降碳-减污-扩绿-增长协同增效的影响呈现复杂的非线性特征。 展开更多
关键词 降碳-减污-扩绿-增长 耦合协调度 时空演变 XGBoost
在线阅读 下载PDF
SAFE结合GC-MS/O分离分析29种淡香型天然香辛料香气活性成分 被引量:3
18
作者 蒲丹丹 孟瑞馨 +3 位作者 曹博雅 郑瑞仪 孙宝国 张玉玉 《精细化工》 北大核心 2025年第1期135-148,158,共15页
采用溶剂萃取结合溶剂辅助风味蒸发萃取(SAFE),分离富集29种淡香型天然香辛料的香气活性成分,使用气相色谱质谱/嗅闻联用仪(GC-MS/O)进行了定性定量测定。将各类香气活性化合物的种类和含量构建相关系数矩阵网络,建立了不同香辛料的网... 采用溶剂萃取结合溶剂辅助风味蒸发萃取(SAFE),分离富集29种淡香型天然香辛料的香气活性成分,使用气相色谱质谱/嗅闻联用仪(GC-MS/O)进行了定性定量测定。将各类香气活性化合物的种类和含量构建相关系数矩阵网络,建立了不同香辛料的网络可视化图。结果表明,共检测到244种香气活性成分,其含量较高的主要成分为151种,包括烯烃类31种、醇类20种、酯类13种、酮类18种、醛类13种、酚类10种、含硫类11种、酸类9种、醚类6种、烷烃类7种和含氮类4种。芳樟醇和香兰素分别在28、25种淡香型香辛料中检出。香荚兰、枯茗、芒果和月桂叶中质量分数最高的分别为香兰素、4-异丙基苯甲醛、柠檬醛和4-异丙基苯甲醛;枫茅、月桂叶、豆蔻、甘牛至、草果、迷迭香、罗幌子和藏红花中醇类化合物的质量分数较高,分别为香叶醇、α-松油醇、桉叶油醇、芳樟醇、反式-橙花叔醇、(–)-4-萜品醇、桉叶油醇、(1α,2α,5α)-2-甲基-5-(1-甲基乙基)-双环[3.1.0]己-2-醇;刺柏、圆叶当归、姜黄、甘草、迷迭香、调料九里香和菖蒲中的烯烃类化合物质量分数最高,分别为茴香脑、大根香叶烯、α-姜黄烯、反-菖蒲烯、β-瑟林烯、洋芹脑和茴香脑;蒙百里香、葫芦巴、罗幌子中主要的酚类化合物为丁香酚;刺山柑、欧芹中主要的酯类化合物为乙酸松油酯;芒果、香椿中的含硫类物质种类和含量最高,分别为3-甲硫基丙醛和1-甲基乙基丙基二硫;芝麻主要以2,6-二甲基吡嗪和4-烯丙基苯甲醚为主;石榴和山奈的主要香气活性成分为茴香脑;杨桃的主要香气活性成分为水杨酸甲酯。29种淡香型香辛料分为4大类,其中香椿的介中心度最高,表明其在淡香型香辛料网络中起着核心桥梁作用。 展开更多
关键词 淡香型香辛料 溶剂辅助风味蒸发萃取 气相色谱-串联质谱 气相色谱-串联质谱/嗅闻仪 香气活性成分 香料与香精
在线阅读 下载PDF
舒芬太尼通过调节HIF-1α-Kcnq1ot1影响缺氧-复氧导致的心肌细胞损伤 被引量:1
19
作者 邓方方 李继勇 +4 位作者 张力 邹高锐 陈治军 辛欢 乐薇 《中国药理学通报》 北大核心 2025年第3期500-507,共8页
目的探讨舒芬太尼(sufentanil,Suf)能否通过调节缺氧诱导因子-1α(hypoxia inducible factor-1α,HIF-1α)-KCNQ1重叠转录物1(KCNQ1 opposite strand/antisense transcript 1,Kcnq1ot1)改善缺氧-复氧(hypoxia-reoxygenation,H/R)导致的... 目的探讨舒芬太尼(sufentanil,Suf)能否通过调节缺氧诱导因子-1α(hypoxia inducible factor-1α,HIF-1α)-KCNQ1重叠转录物1(KCNQ1 opposite strand/antisense transcript 1,Kcnq1ot1)改善缺氧-复氧(hypoxia-reoxygenation,H/R)导致的心肌细胞损伤。方法生物信息学分析预测HIF-1α与Kcnq1ot1的相互作用。将H9c2细胞分为Ctrl组、H/R组、Suf组;oe-HIF-1α组、oe-HIF-1α+Suf组、sh-HIF-1α组、sh-HIF-1α+Kcnq1ot1组。MTT法检测细胞活性,TUNEL法检测细胞凋亡,ELISA法检测细胞上清液中的CK-MB与HBDH浓度,Western blot分析细胞中HIF-1α蛋白表达,逆转录定量PCR(RT-qPCR)测定Kcnq1ot1的mRNA表达水平。构建心肌缺血/再灌注大鼠模型,评估Suf对体内心肌缺血/再灌注的治疗潜力。结果生物信息学分析发现,HIF-1α与Kcnq1ot1之间存在直接的相互作用。与Ctrl组相比,H/R组的H9c2细胞活性降低,细胞凋亡增加,CK-MB与HBDH浓度上调,HIF-1α与Kcnq1ot1的表达增强(均P<0.05)。转染oe-HIF-1α后,进一步加剧了上述结果(均P<0.05);而Suf干预抑制了以上结果(均P<0.05)。与H/R组相比,sh-HIF-1α组的细胞活性明显改善,凋亡减少,CK-MB与HBDH浓度降低(均P<0.05);转染Kcnq1ot1则部分逆转了这些结果(均P<0.05)。动物实验发现,Suf能够改善大鼠心肌缺血/再灌注损伤。结论Suf通过抑制HIF-1α-Kcnq1ot1改善心肌H/R损伤。 展开更多
关键词 舒芬太尼 缺氧诱导因子-Α KCNQ1重叠转录物1 心肌缺氧-复氧损伤 缺血/再灌注损伤 心肌损伤
在线阅读 下载PDF
基于SSA-SVR算法的光纤光栅波长解调方法
20
作者 刘颖刚 李飞 +3 位作者 袁宇博 李瑞 周蕊 徐心怡 《光子学报》 北大核心 2025年第1期18-28,共11页
针对可调谐光纤法布里-珀罗滤波器在光纤光栅解调中受到迟滞和温漂特性影响导致解调误差增大的问题,提出一种基于麻雀搜索算法优化支持向量回归的光纤光栅波长解调方法。采用滑动窗口与支持向量回归结合的方法构建可调谐光纤法布里-珀... 针对可调谐光纤法布里-珀罗滤波器在光纤光栅解调中受到迟滞和温漂特性影响导致解调误差增大的问题,提出一种基于麻雀搜索算法优化支持向量回归的光纤光栅波长解调方法。采用滑动窗口与支持向量回归结合的方法构建可调谐光纤法布里-珀罗滤波器的波长补偿模型。实验结果表明,当锯齿波调谐频率为0.5 Hz时,该模型补偿后的漂移波长平均绝对误差和均方误差分别降低至18.47 pm和1.21 pm。稳定性测试中,该方法解调波长值与sm125解调值之间的平均绝对误差为7.28 pm;40~90℃降温实验中,该解调方法的平均绝对误差为7.44 pm。此方法验证了光纤光栅解调系统在不借助硬件参考的情况下,可以有效降低光栅波长解调误差。 展开更多
关键词 光纤光栅 波长解调 机器学习 可调谐法布里-珀罗滤波器 波长漂移补偿
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部