提出了一种基于共同向量结合2维主成分分析(2-dimen- sional principal component analysis,2DPCA)的人脸识别方法.共同向量由图像通过Gram-Schmidt正交变换而求得,具有该类图像共同不变的性质.原始图像与该类其同向量之间的差分向量通...提出了一种基于共同向量结合2维主成分分析(2-dimen- sional principal component analysis,2DPCA)的人脸识别方法.共同向量由图像通过Gram-Schmidt正交变换而求得,具有该类图像共同不变的性质.原始图像与该类其同向量之间的差分向量通过2DPCA处理,依据最小距离测试得到识别结果.实验在ORL和Yale人脸数据库进行测试,结果表明本文提出的方法有较好的识别性能.展开更多
提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA...提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA与Fisher线性判别FLD(Fisher Linear Discriminate)结合起来,利用了以前仅用于降维的PCA特征和FLD特征相融合进行掌纹识别。基于PolyU掌纹库的实验结果表明,该方法不仅有更高的识别率,而且维数更低。展开更多
针对强噪声环境下雷达新型有源干扰识别准确率不高的问题,提出了一种KPCA-SAE-BP网络算法。提取干扰信号时域、频域、波形域、小波域、双谱域等特征构建67维输入空间,经过核主成分分析(kernel principal component analysis,KPCA)将高...针对强噪声环境下雷达新型有源干扰识别准确率不高的问题,提出了一种KPCA-SAE-BP网络算法。提取干扰信号时域、频域、波形域、小波域、双谱域等特征构建67维输入空间,经过核主成分分析(kernel principal component analysis,KPCA)将高维数据进行非线性降维与重构,利用SAE-BP神经网络完成分类识别。仿真结果表明,在干噪比(JNR)大于-1 dB的强噪声环境中,KPCA-SAE-BP网络算法对6种新型有源干扰的识别准确率达到90%以上,训练与识别时间少于0.7 s。相同参数条件下,与经典BP神经网络、SAE-BP网络、KPCA-BP网络、GA-BP网络相比,具有更好的检测识别性能。展开更多
文摘提出了一种基于共同向量结合2维主成分分析(2-dimen- sional principal component analysis,2DPCA)的人脸识别方法.共同向量由图像通过Gram-Schmidt正交变换而求得,具有该类图像共同不变的性质.原始图像与该类其同向量之间的差分向量通过2DPCA处理,依据最小距离测试得到识别结果.实验在ORL和Yale人脸数据库进行测试,结果表明本文提出的方法有较好的识别性能.
文摘提出一种改进的基于Gabor小波变换和二维主分量分析2DPCA(2-Dimensional Principal component analysis)的掌纹识别。2DPCA克服了传统Gabor小波变换后直接进行主分量分析PCA(Principal component analysis)遇到的维数灾难问题,并且将PCA与Fisher线性判别FLD(Fisher Linear Discriminate)结合起来,利用了以前仅用于降维的PCA特征和FLD特征相融合进行掌纹识别。基于PolyU掌纹库的实验结果表明,该方法不仅有更高的识别率,而且维数更低。