Roasting bastnaesite concentrates is a crucial process in extracting rare earths.This study explored an efficient suspension roasting technology and investigated the bastnaesite pyrolysis and cerium(Ce)oxidation.Relev...Roasting bastnaesite concentrates is a crucial process in extracting rare earths.This study explored an efficient suspension roasting technology and investigated the bastnaesite pyrolysis and cerium(Ce)oxidation.Relevant analytical tests were applied to evaluate the phase and surface property variations of bastnaesite,and isothermal kinetic analysis of bastnaesite pyrolysis and Ce oxidation was performed.The results revealed that bastnaesite decomposed rapidly and accompanied by Ce oxidation,and the gas-solid products were identified as CO_(2),Ce_(7)O_(12),La_(2)O_(3),CeF_(3) and LaF_(3),with Ce oxidation restricted by bastnaesite pyrolysis.As roasting time prolonged,cracks and pores appeared on bastnaesite surface;the BET specific surface and pore diameter increased.In later roasting period,the pore diameter continued to increase but the specific surface decreased,assigned to particle fusion agglomeration and pore consolidation.Additionally,the surface C content reduced and Ce(Ⅳ)content increased gradually as roasting progressed.The reaction kinetics all followed Avrami-Erofeev equations,the reaction orders of bastnaesite pyrolysis and Ce oxidation decreased with decreasing reaction temperature.The calculated activation energies at lower temperatures were higher than those calculated at higher temperatures.This study analyzed the bastnaesite reaction mechanism to supply a reference for the application of suspension roasting technology in bastnaesite smelting.展开更多
The magnetization reduction of hematite using biomass waste can effectively utilize waste and reduce CO_(2) emission to achieve the goals of carbon peaking and carbon neutrality.The effects of temperatures on suspensi...The magnetization reduction of hematite using biomass waste can effectively utilize waste and reduce CO_(2) emission to achieve the goals of carbon peaking and carbon neutrality.The effects of temperatures on suspension magnetization roasting of hematite using biomass waste for evolved gases have been investigated using TG-FTIR,Py-GC/MS and gas composition analyzer.The mixture reduction process is divided into four stages.In the temperature range of 200-450℃ for mixture,the release of CO_(2),acids,and ketones is dominated in gases products.The yield and concentration of small molecules reducing gases increase when the temperature increases from 450 to 900℃.At 700℃,the volume concentrations of CO,H_(2) and CH_(4) peak at 8.91%,8.90% and 4.91%,respectively.During the suspension magnetization roasting process,an optimal iron concentrate with an iron grade of 70.86%,a recovery of 98.66% and a magnetic conversion of 45.70% is obtained at 700℃.Therefore,the magnetization reduction could react greatly in the temperature range of 600 to 700℃ owing to the suitable reducing gases.This study shows a detail gaseous evolution of roasting temperature and provides a new insight for studying the reduction process of hematite using biomass waste.展开更多
Vehicle suspension design includes a number of compromises to provide good leveling of stability and ride comfort. Optimization of off-road vehicle suspension system is one of the most effective methods, which could c...Vehicle suspension design includes a number of compromises to provide good leveling of stability and ride comfort. Optimization of off-road vehicle suspension system is one of the most effective methods, which could considerably enhance the vehicle stability and controllability. In this work, a comprehensive optimization of an off-read vehicle suspension system model was carried out using software ADAMS. The geometric parameters of suspension system were optimized using genetic algorithm (GA) in a way that ride comfort, handling and stability of vehicle were improved. The results of optimized suspension system and variations of geometric parameters due to road roughness and different steering angles were presented in ADAMS and the results of optimized and conventional suspension systems during various driving maneuvers were compared. The simulation results indicate that the camber angle variations decrease by the optimized suspension system, resulting in improved handling and ride comfort characteristics.展开更多
Suspension roasting followed by magnetic separation is a promising method to upgrade oolitic hematite ore.An oolitic hematite ore was roasted using suspension roasting technology at different temperatures.The phase tr...Suspension roasting followed by magnetic separation is a promising method to upgrade oolitic hematite ore.An oolitic hematite ore was roasted using suspension roasting technology at different temperatures.The phase transformation for iron minerals was investigated by XRD and Mossbauer spectrum,and the characteristics of roasted product were analyzed by VSM and SEM-EDS.Results indicate that the magnetic concentrate is of 58.73% Fe with iron recovery of 83.96% at 650 °C.The hematite is rapidly transformed into magnetite during the roasting with transformation ratio of 92.75% at 650 °C.Roasting temperature has a significant influence on the phase transformation of hematite to magnetite.The transformation ratio increases with increased temperature.After roasting,the magnetic susceptibility is significantly improved,while iron ore microstructure is not altered significantly.展开更多
The present experimental study investigates shock wave mitigation capability of potentially new personal protective equipment(PPE) suspension pads made from polyurea and shear thickening fluid(STF).The shock tube test...The present experimental study investigates shock wave mitigation capability of potentially new personal protective equipment(PPE) suspension pads made from polyurea and shear thickening fluid(STF).The shock tube test results show that when placed behind Twaron fabric systems with thickness ranging from 2 mm to 18 mm, the replacement of conventional flexible foam pad with STF and STF-infused foam pads with the same thickness of 20 mm greatly reduces the normalized peak pressure(by about 72% for each pad). However, this benefit is partially offset by a large increase in the normalized impulse(by about78% for the STF pad and 131% for the STF-infused foam pad) which may cause the shock wave mitigation performance of these two pads to become less effective. Interestingly, the use of 4 mm thick polyurea pad can greatly reduce the normalized peak pressure and impulse as well(by about 74% and 49%, respectively). These results reveal that among the potentially new suspension pads tested, the polyurea pad displays the best shock wave mitigation performance. Therefore, polyurea has potential for use as a suspension pad in personal protective equipment requiring shock wave mitigation capability such as fabric ballistic vests, bomb suits and combat helmets.展开更多
Previous studies have confirmed that an active suspension system with high speed ON/OFF solenoid valves could provide the same vibration isolation efficiency as that of system with pressure proportional valve. In this...Previous studies have confirmed that an active suspension system with high speed ON/OFF solenoid valves could provide the same vibration isolation efficiency as that of system with pressure proportional valve. In this study, by using Linear-quadratic optimization technique and Kalman filter method, an optimal regulator controller with a state observer was designed for the proposed system. Simulation and experimental research was conducted on a quarter car model. The simulation analysis of the system frequency characteristic suggested that the peak value of magnitude response curve in the case of system with an optimal controller would be lowered significantly, and the experiment results also showed that an improvement in the vibration isolation effect was obtained in using the designed optimal controller over the sky hook damper controller.展开更多
The hallmark of apoptosis, in suspension cultures of Taxus spp. cells induced by fungal extractive or by abiotic means, was studied by total DNA agarose gel electrophoresis and in situ end-labeling. The cleavage of nu...The hallmark of apoptosis, in suspension cultures of Taxus spp. cells induced by fungal extractive or by abiotic means, was studied by total DNA agarose gel electrophoresis and in situ end-labeling. The cleavage of nuclear DNA (nDNA) into oligonucleosomal fragments(DNA laddering) was a characteristic of apoptosis, which involved cell shrinkage, condensation of cytoplasm and tracheary elements differentiation. Terminal deoxynucleotidy transferase-mediated dUTP nick end in situ labeling (TUNEL) assay of Taxus spp. cells showed that fungal extractive or abiotic elicltors (Ce4+, Taxol, H2O2) induced TUNEL positive. Also, the increase of the apoptotic cell ratio was accompanied by the increase of secondary metabolites (especially Taxol). These results suggest that apoptosis may have some coincidence with biosynthesis of Taxol. The implication of apoptosis for the production of secondary metabolites in plant cell cultures is discussed.展开更多
A disturbance decoupled fault diagnosis strategy is proposed.This disturbance decoupled fault diagnosis is both robust to disturbances and sensitive to sensor faults of magnetic levitation control system.First,a robus...A disturbance decoupled fault diagnosis strategy is proposed.This disturbance decoupled fault diagnosis is both robust to disturbances and sensitive to sensor faults of magnetic levitation control system.First,a robust controller based on a novel disturbance observer is devised to improve the disturbance attenuation ability,which greatly enhances the robustness of the system.Second,a fault reconstruction technique with adaptive method is presented,along with a strict verification for guaranteeing the robustness of fault.This fault reconstruction technique provides an accurate sensor fault reconstruction.From the results of simulation and experiments conducted on the CMS-04 maglev train,the integrated strategy is robust to model uncertainties of the system and the fault reconstruction algorithm is able to reconstruct the dynamic uncertain faults.展开更多
The rheological behavior of fumed silica suspensions in polyethylene glycol(PEG) was studied at steady and oscillatory shear stress using AR 2000 stress controlled rheometer. The systems show reversible shear thickeni...The rheological behavior of fumed silica suspensions in polyethylene glycol(PEG) was studied at steady and oscillatory shear stress using AR 2000 stress controlled rheometer. The systems show reversible shear thickening behavior and the shear-thickening behavior can be explained by the clustering mechanism. The viscosity and the degree of shear-thickening of the systems strongly depend on the mass fraction of the silica, the molecular weigh of PEG and the frequency used in the rheological measurement. The silica volume fraction of the systems is 1.16% 3.62%, corresponding to the mass fraction of 4%9%. The shear-thickening taking place in the low volume fraction may contribute to the fractal nature of the silica. At oscillatory shear stress, when the shear stress is less than the critical stress, the storage modulus decreases significantly, meanwhile the loss modulus and the complex viscosity almost remain unchanged; when the shear stress is larger than the critical stress, the storage modulus, the loss modulus and the complex viscosity increase with the increase of shear stress. The loss modulus is larger than the storage modulus in the range of stress studied and both moduli depend on frequency.展开更多
Oolitic hematite is an iron ore resource with rich reserves,complex composition,low grade,fine disseminated particle sizes,and a unique oolitic structure.In this study,a microwave-assisted suspension magnetization roa...Oolitic hematite is an iron ore resource with rich reserves,complex composition,low grade,fine disseminated particle sizes,and a unique oolitic structure.In this study,a microwave-assisted suspension magnetization roasting technology was proposed to recover and utilize the ore.The results showed that under the conditions of microwave pretreatment temperature of 1050℃ for 2 min,a magnetic concentrate with an iron grade of 58.72%at a recovery of 89.32%was obtained by microwave suspension magnetization roasting and magnetic separation.Moreover,compared with the no microwave pretreatment case,the iron grade and recovery increased by 3.17%and 1.58%,respectively.Microwave pretreatment increased the saturation magnetization of the roasted products from 24.974 to 39.236(A∙m^(2))/kg and the saturation susceptibility from 0.179×10^(−3) m^(3)/kg to 0.283×10^(−3) m^(3)/kg.Microcracks were formed between the iron and gangue minerals,and they gradually extended to the core of oolite with the increase in the pretreatment time.The reducing gas diffused from outside to inside along the microcracks,which promoted the selective transformation of the weak magnetic hematite into the strong magnetic magnetite.展开更多
Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigate...Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigated to improve the selective conversion of siderite to magnetite and CO,enriching the theoretical system of green SMR using siderite as a reductant.According to the gas products analyses,the peak value of the reaction rate increased with increasing temperature,and its curves presented the feature of an early peak and long tail.The mechanism function of the siderite pyrolysis was the contraction sphere model(R_(3)):f(α)=3(1−α)2/3;E_(α)was 46.4653 kJ/mol;A was 0.5938 s^(−1);the kinetics equation was k=0.5938exp[−46.4653/(RT)].The in-situ HT-XRD results indicated that siderite was converted into magnetite and wüstite that exhibited a good crystallinity in SMR under a N_(2) atmosphere.At 620℃,the saturation magnetization(M_(s)),remanence magnetization(Mr),and coercivity(Hc)of the product peaked at 53.63×10^(-3)A·m^(2)/g,10.23×10^(-3)A·m^(2)/g,and 12.40×10^(3)A/m,respectively.Meanwhile,the initial particles with a smooth surface were transformed into particles with a porous and loose structure in the roasting process,which would contribute to reducing the grinding cost.展开更多
Several methods for evaluating the sublayer suspension beneath old pavement with falling weight deflectormeter(FWD), were summarized and the respective advantages and disadvantages were analyzed. Based on these method...Several methods for evaluating the sublayer suspension beneath old pavement with falling weight deflectormeter(FWD), were summarized and the respective advantages and disadvantages were analyzed. Based on these methods, the evaluation principles were improved and a new type of the neural network, functional-link neural network was proposed to evaluate the sublayer suspension with FWD test results. The concept of function link, learning method of functional-link neural network and the establishment process of neural network model were studied in detail. Based on the old pavement over-repairing engineering of Kaiping section, Guangdong Province in G325 National Highway, the application of functional-link neural network in evaluation of sublayer suspension beneath old pavement based on FWD test data on the spot was investigated. When learning rate is 0.1 and training cycles are 405, the functional-link network error is less than 0.000 1, while the optimum chosen 4-8-1 BP needs over 10 000 training cycles to reach the same accuracy with less precise evaluation results. Therefore, in contrast to common BP neural network,the functional-link neural network adopts single layer structure to learn and calculate, which simplifies the network, accelerates the convergence speed and improves the accuracy. Moreover the trained functional-link neural network can be (adopted) to directly evaluate the sublayer suspension based on FWD test data on the site. Engineering practice indicates that the functional-link neural model gains very excellent results and effectively guides the pavement over-repairing construction.展开更多
Two simple and effective control strategies for a multi-axle heavy truck, modified skyhook damping (MSD) control and proportional-integration-derivative (PID) control, were implemented into functional virtual prototyp...Two simple and effective control strategies for a multi-axle heavy truck, modified skyhook damping (MSD) control and proportional-integration-derivative (PID) control, were implemented into functional virtual prototype (FVP) model and compared in terms of road friendliness and ride comfort. A four-axle heavy truck-road coupling system model was established using FVP technology and validated through a ride comfort test. Then appropriate passive air suspensions were chosen to replace the rear tandem suspensions of the original truck model for preliminary optimization. The mechanical properties and time lag of dampers were taken into account in simulations of MSD and PID semi-active dampers implemented using MATLAB/Simulink. Through co-simulations with Adams and MATLAB, the effects of semi-active MSD and PID control were analyzed and compared, and control parameters which afforded the best comprehensive performance for each control strategy were chosen. Simulation results indicate that compared with the passive air suspension truck, semi-active MSD control improves both ride comfort and road-friendliness markedly, with optimization ratios of RMS vertical acceleration and RMS tyre force ranging from 10.1% to 44.8%. However, semi-active PID control only reduces vertical vibration of the driver's seat by 11.1%, 11.1% and 10.9% on A, B and C level roads respectively. Both strategies are robust to the variation of road level.展开更多
A systematic and generic procedure for the determination of the reasonable finished state of self-anchored suspension bridges is proposed, the realization of which is mainly through adjustment of the hanger tensions. ...A systematic and generic procedure for the determination of the reasonable finished state of self-anchored suspension bridges is proposed, the realization of which is mainly through adjustment of the hanger tensions. The initial hanger tensions are first obtained through an iterative analysis by combining the girder-tower-only finite element(FE) model with the analytical program for shape finding of the spatial cable system. These initial hanger tensions, together with the corresponding cable coordinates and internal forces, are then included into the FE model of the total bridge system, the nonlinear analysis of which involves the optimization technique. Calculations are repeated until the optimization algorithm converges to the most optimal hanger tensions(i.e. the desired reasonable finished bridge state). The "temperature rigid arm" is introduced to offset the unavoidable initial deformations of the girder and tower, which are due to the huge axial forces originated from the main cable. Moreover, by changing the stiffness coefficient K in the girder-tower-only FE model, the stiffness proportion of the main girder, the tower or the cable subsystem in the whole structural system could be adjusted according to the design intentions. The effectiveness of the proposed method is examined and demonstrated by one simple tutorial example and one self-anchored suspension bridge.展开更多
The buffeting performance of kilometer-level high-speed railway suspension bridges has a great impact on the smooth operation of high-speed trains.To investigate the buffeting performance of the structure significantl...The buffeting performance of kilometer-level high-speed railway suspension bridges has a great impact on the smooth operation of high-speed trains.To investigate the buffeting performance of the structure significantly different from traditional suspension bridges,the first long-span high-speed railway suspension bridge,Wufengshan Yangtze River Bridge(WYRB),is taken as a numerical example to demonstrate the effects of structural parameters and wind field parameters on the buffeting responses.Based on the design information,the spatial finite element model(FEM)of WYRB is established before testing its accuracy.The fluctuating wind fields are simulated via both classical and stochastic wave based spectral representation method(SRM).Finite element method is further taken to analyze the parametric sensitivity on wind induced buffeting responses in time domain.The results show that the vertical displacement is more sensitive to the changing dead load than the lateral and torsional ones.The larger stiffness of the main girder and the lower sag-to-span ratio are both helpful to reduce the buffeting responses.Wind spectrum and coherence function are key influencing factors to the responses so setting proper wind field parameters are essential in the wind-resistant design stage.The analytical results can provide references for wind resistance analysis and selection of structural and fluctuating wind field parameters for similar long-span high-speed railway suspension bridges.展开更多
The central buckle, which is often used in a suspension bridge, can improve bridges' performance in the actual operation condition. The influence of the central buckle on natural vibration characteristics and brid...The central buckle, which is often used in a suspension bridge, can improve bridges' performance in the actual operation condition. The influence of the central buckle on natural vibration characteristics and bridge-deck driving comfort of a long-span suspension bridge is studied by using a case study of Siduhe Suspension Bridge in China. Based on the finite element software ANSYS and independently complied program, the influence of the central buckle on the structure force-applied characteristics of a long-span suspension bridge has been explored. The results show that the huge increases of natural frequencies can result in the presence of central buckles because of the increases of bending and torsional rigidities. The central buckle basically makes the stiffening girders and cables within the triangular area covered as a relatively approximate rigid area. Hence, the central buckle can reduce the torsional displacement of the main girder. However, the increases of bending and torsional rigidities have little influence on the impact factor, which is obtained by using vehicle-bridge coupled vibration analysis. This means that the central buckle has little effect on the comfort indices. In addition, it is found that the central buckle can enhance the bridge deck's driving stability due to the decrease of the torsional displacements of the main girder.展开更多
A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief lit...A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief literaturereview indicates that traditional thermal stress calculation in suspension bridges is based on the2D plane structure with simplified temperature profiles on bridges.Thus,a3D FEM is proposed for accurate stress analysis.The focus is on the incorporation of full field arbitrary temperature profile for the stress analysis.Following this,the effect of realistic temperature distribution on the structure is investigated in detail and an example using field measurements of Aizhai Bridge is integrated with the proposed3D FEM model.Parametric studies are used to illustrate the effect of different parameters on the thermal stress distribution in the bridge structure.Next,the discussion and comparison of the proposed methodology and simplified calculation method in the standard is given.The calculation difference and their potential impact on the structure are shown in detail.Finally,some conclusions and recommendations for future bridge analysis and design are given based on the proposed study.展开更多
The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite...The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite element simulations, the static deformations of different components, stress increments and distributions of the girder, as well as the vibration characteristics and damping ratio of the Hunan Road Bridge were analyzed, which is the widest self-anchored suspension bridge in China at present. The dynamic responses were calculated using the Newmark-β integration method assisted by the simulation models of bridge and vehicles, the influences on the dynamic impact coefficient(DIC) brought by the vehicle parameters, girder width, eccentricity travel and deck flatness were also researched. The spatial effect of the girder is obvious due to the extra width, which performs as the stress increments distribute unevenly along the transverse direction, and the girder deflections and stress increments of the upper plate change as a "V" and "M" shape respectively under the symmetrical vehicle loads affected by the shear lag effect, cross slope and local effect of the wheels, the maximum of stress increments are located in the junctions with the inner webs. The obvious girder torsional deformation and the apparent unevenness of the hanger forces between the two cable planes under the eccentric vehicle loads, together with the mode shapes such as the girder transverse bending and torsion which appear relatively earlier, all reflect the weakened torsional rigidity of the extra-wide girder. The transverse displacements of towers are more obvious than the longitudinal ones. As for the influences on the DIC, the static effect of the heavier vehicles plays a major role when pass through with a higher speed and the changes of vehicle suspension stiffness generate greater impacts than the suspension damp. The values of DIC in the vehicle-running side during the eccentric travel, affected by the restricts from the static effects of the eccentric moving trucks, are significantly smaller than the vehicle-free side, the increase in the road roughness is the most sensitive one among the above influential factors. The results could provide references for the design, static and dynamic response analysis of the similar extra-wide suspension bridges.展开更多
A neuron proportion integration (PI) control strategy for semi-active suspension system of tracked vehicle was proposed based on its unique structure and the multiple and complex environment of the driving traffic. An...A neuron proportion integration (PI) control strategy for semi-active suspension system of tracked vehicle was proposed based on its unique structure and the multiple and complex environment of the driving traffic. An adaptive genetic algorithm is used to optimize the parameters of the neuron PI controller. The simulation result of the neuron PI control for semi-active suspension system of tracked vehicle indicates that the vertical amplitude,pitch angle and vertical acceleration of the vehicle are well controlled. The root mean square (RMS) of the vertical amplitude decreases by 37.2%,and 45.2% for the pitch angle,38.6% for the vertical acceleration. The research of neuron PI control experiment for the semi-active suspension system of the tracked vehicle model mining in benthal indicates that the RMS of the weight acceleration vibrating along the vertical direction decreases by 29.5%,the power spectral density resonance peak of the acceleration of the car body decreases by 23.8%.展开更多
基金Projects(2022YFC2905800,2021YFC2901000)supported by the National Key R&D Program of ChinaProject(52174242)supported by the National Science and Technology of ChinaProject(52130406)supported by the National Science and Technology Major Project of China。
文摘Roasting bastnaesite concentrates is a crucial process in extracting rare earths.This study explored an efficient suspension roasting technology and investigated the bastnaesite pyrolysis and cerium(Ce)oxidation.Relevant analytical tests were applied to evaluate the phase and surface property variations of bastnaesite,and isothermal kinetic analysis of bastnaesite pyrolysis and Ce oxidation was performed.The results revealed that bastnaesite decomposed rapidly and accompanied by Ce oxidation,and the gas-solid products were identified as CO_(2),Ce_(7)O_(12),La_(2)O_(3),CeF_(3) and LaF_(3),with Ce oxidation restricted by bastnaesite pyrolysis.As roasting time prolonged,cracks and pores appeared on bastnaesite surface;the BET specific surface and pore diameter increased.In later roasting period,the pore diameter continued to increase but the specific surface decreased,assigned to particle fusion agglomeration and pore consolidation.Additionally,the surface C content reduced and Ce(Ⅳ)content increased gradually as roasting progressed.The reaction kinetics all followed Avrami-Erofeev equations,the reaction orders of bastnaesite pyrolysis and Ce oxidation decreased with decreasing reaction temperature.The calculated activation energies at lower temperatures were higher than those calculated at higher temperatures.This study analyzed the bastnaesite reaction mechanism to supply a reference for the application of suspension roasting technology in bastnaesite smelting.
基金Project(52022019)supported by the National Natural Science Foundation of China。
文摘The magnetization reduction of hematite using biomass waste can effectively utilize waste and reduce CO_(2) emission to achieve the goals of carbon peaking and carbon neutrality.The effects of temperatures on suspension magnetization roasting of hematite using biomass waste for evolved gases have been investigated using TG-FTIR,Py-GC/MS and gas composition analyzer.The mixture reduction process is divided into four stages.In the temperature range of 200-450℃ for mixture,the release of CO_(2),acids,and ketones is dominated in gases products.The yield and concentration of small molecules reducing gases increase when the temperature increases from 450 to 900℃.At 700℃,the volume concentrations of CO,H_(2) and CH_(4) peak at 8.91%,8.90% and 4.91%,respectively.During the suspension magnetization roasting process,an optimal iron concentrate with an iron grade of 70.86%,a recovery of 98.66% and a magnetic conversion of 45.70% is obtained at 700℃.Therefore,the magnetization reduction could react greatly in the temperature range of 600 to 700℃ owing to the suitable reducing gases.This study shows a detail gaseous evolution of roasting temperature and provides a new insight for studying the reduction process of hematite using biomass waste.
文摘Vehicle suspension design includes a number of compromises to provide good leveling of stability and ride comfort. Optimization of off-road vehicle suspension system is one of the most effective methods, which could considerably enhance the vehicle stability and controllability. In this work, a comprehensive optimization of an off-read vehicle suspension system model was carried out using software ADAMS. The geometric parameters of suspension system were optimized using genetic algorithm (GA) in a way that ride comfort, handling and stability of vehicle were improved. The results of optimized suspension system and variations of geometric parameters due to road roughness and different steering angles were presented in ADAMS and the results of optimized and conventional suspension systems during various driving maneuvers were compared. The simulation results indicate that the camber angle variations decrease by the optimized suspension system, resulting in improved handling and ride comfort characteristics.
基金Project([2011]01-69-07)supported by the China Geological Survey Project
文摘Suspension roasting followed by magnetic separation is a promising method to upgrade oolitic hematite ore.An oolitic hematite ore was roasted using suspension roasting technology at different temperatures.The phase transformation for iron minerals was investigated by XRD and Mossbauer spectrum,and the characteristics of roasted product were analyzed by VSM and SEM-EDS.Results indicate that the magnetic concentrate is of 58.73% Fe with iron recovery of 83.96% at 650 °C.The hematite is rapidly transformed into magnetite during the roasting with transformation ratio of 92.75% at 650 °C.Roasting temperature has a significant influence on the phase transformation of hematite to magnetite.The transformation ratio increases with increased temperature.After roasting,the magnetic susceptibility is significantly improved,while iron ore microstructure is not altered significantly.
基金supported by the Ministry of Education,Singapore(R265000533112)
文摘The present experimental study investigates shock wave mitigation capability of potentially new personal protective equipment(PPE) suspension pads made from polyurea and shear thickening fluid(STF).The shock tube test results show that when placed behind Twaron fabric systems with thickness ranging from 2 mm to 18 mm, the replacement of conventional flexible foam pad with STF and STF-infused foam pads with the same thickness of 20 mm greatly reduces the normalized peak pressure(by about 72% for each pad). However, this benefit is partially offset by a large increase in the normalized impulse(by about78% for the STF pad and 131% for the STF-infused foam pad) which may cause the shock wave mitigation performance of these two pads to become less effective. Interestingly, the use of 4 mm thick polyurea pad can greatly reduce the normalized peak pressure and impulse as well(by about 74% and 49%, respectively). These results reveal that among the potentially new suspension pads tested, the polyurea pad displays the best shock wave mitigation performance. Therefore, polyurea has potential for use as a suspension pad in personal protective equipment requiring shock wave mitigation capability such as fabric ballistic vests, bomb suits and combat helmets.
文摘Previous studies have confirmed that an active suspension system with high speed ON/OFF solenoid valves could provide the same vibration isolation efficiency as that of system with pressure proportional valve. In this study, by using Linear-quadratic optimization technique and Kalman filter method, an optimal regulator controller with a state observer was designed for the proposed system. Simulation and experimental research was conducted on a quarter car model. The simulation analysis of the system frequency characteristic suggested that the peak value of magnitude response curve in the case of system with an optimal controller would be lowered significantly, and the experiment results also showed that an improvement in the vibration isolation effect was obtained in using the designed optimal controller over the sky hook damper controller.
文摘The hallmark of apoptosis, in suspension cultures of Taxus spp. cells induced by fungal extractive or by abiotic means, was studied by total DNA agarose gel electrophoresis and in situ end-labeling. The cleavage of nuclear DNA (nDNA) into oligonucleosomal fragments(DNA laddering) was a characteristic of apoptosis, which involved cell shrinkage, condensation of cytoplasm and tracheary elements differentiation. Terminal deoxynucleotidy transferase-mediated dUTP nick end in situ labeling (TUNEL) assay of Taxus spp. cells showed that fungal extractive or abiotic elicltors (Ce4+, Taxol, H2O2) induced TUNEL positive. Also, the increase of the apoptotic cell ratio was accompanied by the increase of secondary metabolites (especially Taxol). These results suggest that apoptosis may have some coincidence with biosynthesis of Taxol. The implication of apoptosis for the production of secondary metabolites in plant cell cultures is discussed.
基金Project(11202230)supported by the National Natural Science Foundation of China
文摘A disturbance decoupled fault diagnosis strategy is proposed.This disturbance decoupled fault diagnosis is both robust to disturbances and sensitive to sensor faults of magnetic levitation control system.First,a robust controller based on a novel disturbance observer is devised to improve the disturbance attenuation ability,which greatly enhances the robustness of the system.Second,a fault reconstruction technique with adaptive method is presented,along with a strict verification for guaranteeing the robustness of fault.This fault reconstruction technique provides an accurate sensor fault reconstruction.From the results of simulation and experiments conducted on the CMS-04 maglev train,the integrated strategy is robust to model uncertainties of the system and the fault reconstruction algorithm is able to reconstruct the dynamic uncertain faults.
文摘The rheological behavior of fumed silica suspensions in polyethylene glycol(PEG) was studied at steady and oscillatory shear stress using AR 2000 stress controlled rheometer. The systems show reversible shear thickening behavior and the shear-thickening behavior can be explained by the clustering mechanism. The viscosity and the degree of shear-thickening of the systems strongly depend on the mass fraction of the silica, the molecular weigh of PEG and the frequency used in the rheological measurement. The silica volume fraction of the systems is 1.16% 3.62%, corresponding to the mass fraction of 4%9%. The shear-thickening taking place in the low volume fraction may contribute to the fractal nature of the silica. At oscillatory shear stress, when the shear stress is less than the critical stress, the storage modulus decreases significantly, meanwhile the loss modulus and the complex viscosity almost remain unchanged; when the shear stress is larger than the critical stress, the storage modulus, the loss modulus and the complex viscosity increase with the increase of shear stress. The loss modulus is larger than the storage modulus in the range of stress studied and both moduli depend on frequency.
基金Projects(51874071,51734005,52104257)supported by the National Natural Science Foundation of ChinaProject(161045)supported by the Fok Ying Tung Education Foundation for Yong Teachers in the Higher Education Institutions of China。
文摘Oolitic hematite is an iron ore resource with rich reserves,complex composition,low grade,fine disseminated particle sizes,and a unique oolitic structure.In this study,a microwave-assisted suspension magnetization roasting technology was proposed to recover and utilize the ore.The results showed that under the conditions of microwave pretreatment temperature of 1050℃ for 2 min,a magnetic concentrate with an iron grade of 58.72%at a recovery of 89.32%was obtained by microwave suspension magnetization roasting and magnetic separation.Moreover,compared with the no microwave pretreatment case,the iron grade and recovery increased by 3.17%and 1.58%,respectively.Microwave pretreatment increased the saturation magnetization of the roasted products from 24.974 to 39.236(A∙m^(2))/kg and the saturation susceptibility from 0.179×10^(−3) m^(3)/kg to 0.283×10^(−3) m^(3)/kg.Microcracks were formed between the iron and gangue minerals,and they gradually extended to the core of oolite with the increase in the pretreatment time.The reducing gas diffused from outside to inside along the microcracks,which promoted the selective transformation of the weak magnetic hematite into the strong magnetic magnetite.
基金Projects(51874071,52022019,51734005)supported by the National Natural Science Foundation of ChinaProject(161045)supported by the Fok Ying Tung Education Foundation for Yong Teachers in the Higher Education Institutions of China。
文摘Siderite,as an abundant iron ore,has not been effectively utilized,with a low utilization rate.In this study,the in-situ kinetics and mechanism of siderite during suspension magnetization roasting(SMR)were investigated to improve the selective conversion of siderite to magnetite and CO,enriching the theoretical system of green SMR using siderite as a reductant.According to the gas products analyses,the peak value of the reaction rate increased with increasing temperature,and its curves presented the feature of an early peak and long tail.The mechanism function of the siderite pyrolysis was the contraction sphere model(R_(3)):f(α)=3(1−α)2/3;E_(α)was 46.4653 kJ/mol;A was 0.5938 s^(−1);the kinetics equation was k=0.5938exp[−46.4653/(RT)].The in-situ HT-XRD results indicated that siderite was converted into magnetite and wüstite that exhibited a good crystallinity in SMR under a N_(2) atmosphere.At 620℃,the saturation magnetization(M_(s)),remanence magnetization(Mr),and coercivity(Hc)of the product peaked at 53.63×10^(-3)A·m^(2)/g,10.23×10^(-3)A·m^(2)/g,and 12.40×10^(3)A/m,respectively.Meanwhile,the initial particles with a smooth surface were transformed into particles with a porous and loose structure in the roasting process,which would contribute to reducing the grinding cost.
文摘Several methods for evaluating the sublayer suspension beneath old pavement with falling weight deflectormeter(FWD), were summarized and the respective advantages and disadvantages were analyzed. Based on these methods, the evaluation principles were improved and a new type of the neural network, functional-link neural network was proposed to evaluate the sublayer suspension with FWD test results. The concept of function link, learning method of functional-link neural network and the establishment process of neural network model were studied in detail. Based on the old pavement over-repairing engineering of Kaiping section, Guangdong Province in G325 National Highway, the application of functional-link neural network in evaluation of sublayer suspension beneath old pavement based on FWD test data on the spot was investigated. When learning rate is 0.1 and training cycles are 405, the functional-link network error is less than 0.000 1, while the optimum chosen 4-8-1 BP needs over 10 000 training cycles to reach the same accuracy with less precise evaluation results. Therefore, in contrast to common BP neural network,the functional-link neural network adopts single layer structure to learn and calculate, which simplifies the network, accelerates the convergence speed and improves the accuracy. Moreover the trained functional-link neural network can be (adopted) to directly evaluate the sublayer suspension based on FWD test data on the site. Engineering practice indicates that the functional-link neural model gains very excellent results and effectively guides the pavement over-repairing construction.
基金Projects(51078087, 51178158) supported by the National Natural Science Foundation of ChinaProject(11040606Q39) supported by the Natural Science Foundation of Anhui Province, ChinaProjects(2012HGQC0015, 2011HGBZ0945) supported by the Fundamental Research Funds for the Central Universities
文摘Two simple and effective control strategies for a multi-axle heavy truck, modified skyhook damping (MSD) control and proportional-integration-derivative (PID) control, were implemented into functional virtual prototype (FVP) model and compared in terms of road friendliness and ride comfort. A four-axle heavy truck-road coupling system model was established using FVP technology and validated through a ride comfort test. Then appropriate passive air suspensions were chosen to replace the rear tandem suspensions of the original truck model for preliminary optimization. The mechanical properties and time lag of dampers were taken into account in simulations of MSD and PID semi-active dampers implemented using MATLAB/Simulink. Through co-simulations with Adams and MATLAB, the effects of semi-active MSD and PID control were analyzed and compared, and control parameters which afforded the best comprehensive performance for each control strategy were chosen. Simulation results indicate that compared with the passive air suspension truck, semi-active MSD control improves both ride comfort and road-friendliness markedly, with optimization ratios of RMS vertical acceleration and RMS tyre force ranging from 10.1% to 44.8%. However, semi-active PID control only reduces vertical vibration of the driver's seat by 11.1%, 11.1% and 10.9% on A, B and C level roads respectively. Both strategies are robust to the variation of road level.
基金Project(20133204120015) supported by Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(12KJB560003) supported by the Natural Science Foundation of the Higher Education Institution of Jiangsu Province,China
文摘A systematic and generic procedure for the determination of the reasonable finished state of self-anchored suspension bridges is proposed, the realization of which is mainly through adjustment of the hanger tensions. The initial hanger tensions are first obtained through an iterative analysis by combining the girder-tower-only finite element(FE) model with the analytical program for shape finding of the spatial cable system. These initial hanger tensions, together with the corresponding cable coordinates and internal forces, are then included into the FE model of the total bridge system, the nonlinear analysis of which involves the optimization technique. Calculations are repeated until the optimization algorithm converges to the most optimal hanger tensions(i.e. the desired reasonable finished bridge state). The "temperature rigid arm" is introduced to offset the unavoidable initial deformations of the girder and tower, which are due to the huge axial forces originated from the main cable. Moreover, by changing the stiffness coefficient K in the girder-tower-only FE model, the stiffness proportion of the main girder, the tower or the cable subsystem in the whole structural system could be adjusted according to the design intentions. The effectiveness of the proposed method is examined and demonstrated by one simple tutorial example and one self-anchored suspension bridge.
基金Projects(51908125,51978155) supported by the National Natural Science Foundation of ChinaProject(W03070080)supported by the National Ten Thousand Talent Program for Young Top-notch Talents,China+1 种基金Project(BK20190359)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(BE2018120) supported by the Key Research and Development Plan of Jiangsu Province,China。
文摘The buffeting performance of kilometer-level high-speed railway suspension bridges has a great impact on the smooth operation of high-speed trains.To investigate the buffeting performance of the structure significantly different from traditional suspension bridges,the first long-span high-speed railway suspension bridge,Wufengshan Yangtze River Bridge(WYRB),is taken as a numerical example to demonstrate the effects of structural parameters and wind field parameters on the buffeting responses.Based on the design information,the spatial finite element model(FEM)of WYRB is established before testing its accuracy.The fluctuating wind fields are simulated via both classical and stochastic wave based spectral representation method(SRM).Finite element method is further taken to analyze the parametric sensitivity on wind induced buffeting responses in time domain.The results show that the vertical displacement is more sensitive to the changing dead load than the lateral and torsional ones.The larger stiffness of the main girder and the lower sag-to-span ratio are both helpful to reduce the buffeting responses.Wind spectrum and coherence function are key influencing factors to the responses so setting proper wind field parameters are essential in the wind-resistant design stage.The analytical results can provide references for wind resistance analysis and selection of structural and fluctuating wind field parameters for similar long-span high-speed railway suspension bridges.
基金Project(2015CB057701)supported by the National Basic Research Program of ChinaProjects(51308071,51378081)supported by the National Natural Science Foundation of China+2 种基金Project(3JJ4057)supported by the Natural Science Foundation of Hunan Province,ChinaProject(12K076)supported by the Open Fund of Innovation Platform in Hunan Provincial Universities,ChinaProject(2015319825120)supported by the Traffic Department of Appliced Basic Research,China
文摘The central buckle, which is often used in a suspension bridge, can improve bridges' performance in the actual operation condition. The influence of the central buckle on natural vibration characteristics and bridge-deck driving comfort of a long-span suspension bridge is studied by using a case study of Siduhe Suspension Bridge in China. Based on the finite element software ANSYS and independently complied program, the influence of the central buckle on the structure force-applied characteristics of a long-span suspension bridge has been explored. The results show that the huge increases of natural frequencies can result in the presence of central buckles because of the increases of bending and torsional rigidities. The central buckle basically makes the stiffening girders and cables within the triangular area covered as a relatively approximate rigid area. Hence, the central buckle can reduce the torsional displacement of the main girder. However, the increases of bending and torsional rigidities have little influence on the impact factor, which is obtained by using vehicle-bridge coupled vibration analysis. This means that the central buckle has little effect on the comfort indices. In addition, it is found that the central buckle can enhance the bridge deck's driving stability due to the decrease of the torsional displacements of the main girder.
基金Project(2015CB057701)supported by the National Basic Research Program of ChinaProject(51308071)supported by the National Natural Science Foundation of China+3 种基金Project(13JJ4057)supported by Natural Science Foundation of Hunan Province,ChinaProject(201408430155)supported by the Foundation of China Scholarship CouncilProject(2015319825120)supported by the Traffic Department of Applied Basic Research,ChinaProject(12K076)supported by the Open Foundation of Innovation Platform in Hunan Provincial Universities,China
文摘A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief literaturereview indicates that traditional thermal stress calculation in suspension bridges is based on the2D plane structure with simplified temperature profiles on bridges.Thus,a3D FEM is proposed for accurate stress analysis.The focus is on the incorporation of full field arbitrary temperature profile for the stress analysis.Following this,the effect of realistic temperature distribution on the structure is investigated in detail and an example using field measurements of Aizhai Bridge is integrated with the proposed3D FEM model.Parametric studies are used to illustrate the effect of different parameters on the thermal stress distribution in the bridge structure.Next,the discussion and comparison of the proposed methodology and simplified calculation method in the standard is given.The calculation difference and their potential impact on the structure are shown in detail.Finally,some conclusions and recommendations for future bridge analysis and design are given based on the proposed study.
基金Project(51278104)supported by the National Natural Science Foundation of ChinaProject(2011Y03)supported by Jiangsu Province Transportation Scientific Research Programs,China+1 种基金Project(20133204120015)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(12KJB560003)supported by Jiangsu Province Universities Natural Science Foundation,China
文摘The present work is aimed at studying the mechanic properties of the extra-wide concrete self-anchored suspension bridge under static and dynamic vehicle loads. Based on the field test using 12 heavy trucks and finite element simulations, the static deformations of different components, stress increments and distributions of the girder, as well as the vibration characteristics and damping ratio of the Hunan Road Bridge were analyzed, which is the widest self-anchored suspension bridge in China at present. The dynamic responses were calculated using the Newmark-β integration method assisted by the simulation models of bridge and vehicles, the influences on the dynamic impact coefficient(DIC) brought by the vehicle parameters, girder width, eccentricity travel and deck flatness were also researched. The spatial effect of the girder is obvious due to the extra width, which performs as the stress increments distribute unevenly along the transverse direction, and the girder deflections and stress increments of the upper plate change as a "V" and "M" shape respectively under the symmetrical vehicle loads affected by the shear lag effect, cross slope and local effect of the wheels, the maximum of stress increments are located in the junctions with the inner webs. The obvious girder torsional deformation and the apparent unevenness of the hanger forces between the two cable planes under the eccentric vehicle loads, together with the mode shapes such as the girder transverse bending and torsion which appear relatively earlier, all reflect the weakened torsional rigidity of the extra-wide girder. The transverse displacements of towers are more obvious than the longitudinal ones. As for the influences on the DIC, the static effect of the heavier vehicles plays a major role when pass through with a higher speed and the changes of vehicle suspension stiffness generate greater impacts than the suspension damp. The values of DIC in the vehicle-running side during the eccentric travel, affected by the restricts from the static effects of the eccentric moving trucks, are significantly smaller than the vehicle-free side, the increase in the road roughness is the most sensitive one among the above influential factors. The results could provide references for the design, static and dynamic response analysis of the similar extra-wide suspension bridges.
基金Project(2010GK3091) supported by Industrial Support Project in Science and Technology of Hunan Province, ChinaProject(10B058) supported by Excellent Youth Foundation Subsidized Project of Hunan Provincial Education Department, China
文摘A neuron proportion integration (PI) control strategy for semi-active suspension system of tracked vehicle was proposed based on its unique structure and the multiple and complex environment of the driving traffic. An adaptive genetic algorithm is used to optimize the parameters of the neuron PI controller. The simulation result of the neuron PI control for semi-active suspension system of tracked vehicle indicates that the vertical amplitude,pitch angle and vertical acceleration of the vehicle are well controlled. The root mean square (RMS) of the vertical amplitude decreases by 37.2%,and 45.2% for the pitch angle,38.6% for the vertical acceleration. The research of neuron PI control experiment for the semi-active suspension system of the tracked vehicle model mining in benthal indicates that the RMS of the weight acceleration vibrating along the vertical direction decreases by 29.5%,the power spectral density resonance peak of the acceleration of the car body decreases by 23.8%.